Do you want to publish a course? Click here

Fidelity susceptibility made simple: A unified quantum Monte Carlo approach

262   0   0.0 ( 0 )
 Added by Lei Wang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The fidelity susceptibility is a general purpose probe of phase transitions. With its origin in quantum information and in the differential geometry perspective of quantum states, the fidelity susceptibility can indicate the presence of a phase transition without prior knowledge of the local order parameter, as well as reveal the universal properties of a critical point. The wide applicability of the fidelity susceptibility to quantum many-body systems is, however, hindered by the limited computational tools to evaluate it. We present a generic, efficient, and elegant approach to compute the fidelity susceptibility of correlated fermions, bosons, and quantum spin systems in a broad range of quantum Monte Carlo methods. It can be applied both to the ground-state and non-zero temperature cases. The Monte Carlo estimator has a simple yet universal form, which can be efficiently evaluated in simulations. We demonstrate the power of this approach with applications to the Bose-Hubbard model, the spin-$1/2$ XXZ model, and use it to examine the hypothetical intermediate spin-liquid phase in the Hubbard model on the honeycomb lattice.



rate research

Read More

The diagrammatic Monte Carlo (Diag-MC) method is a numerical technique which samples the entire diagrammatic series of the Greens function in quantum many-body systems. In this work, we incorporate the flat histogram principle in the diagrammatic Monte method and we term the improved version Flat Histogram Diagrammatic Monte Carlo method. We demonstrate the superiority of the method over the standard Diag-MC in extracting the long-imaginary-time behavior of the Greens function, without incorporating any a priori knowledge about this function, by applying the technique to the polaron problem
180 - E. Cobanera , 2009
We show how classical and quantum dualities, as well as duality relations that appear only in a sector of certain theories (emergent dualities), can be unveiled, and systematically established. Our method relies on the use of morphisms of the bond algebra of a quantum Hamiltonian. Dualities are characterized as unitary mappings implementing such morphisms, whose even powers become symmetries of the quantum problem. Dual variables -which were guessed in the past- can be derived in our formalism. We obtain new self-dualities for four-dimensional Abelian gauge field theories.
Quantum Monte Carlo simulations, while being efficient for bosons, suffer from the negative sign problem when applied to fermions - causing an exponential increase of the computing time with the number of particles. A polynomial time solution to the sign problem is highly desired since it would provide an unbiased and numerically exact method to simulate correlated quantum systems. Here we show, that such a solution is almost certainly unattainable by proving that the sign problem is NP-hard, implying that a generic solution of the sign problem would also solve all problems in the complexity class NP (nondeterministic polynomial) in polynomial time.
The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation.
Population annealing is a recent addition to the arsenal of the practitioner in computer simulations in statistical physics and beyond that is found to deal well with systems with complex free-energy landscapes. Above all else, it promises to deliver unrivaled parallel scaling qualities, being suitable for parallel machines of the biggest calibre. Here we study population annealing using as the main example the two-dimensional Ising model which allows for particularly clean comparisons due to the available exact results and the wealth of published simulational studies employing other approaches. We analyze in depth the accuracy and precision of the method, highlighting its relation to older techniques such as simulated annealing and thermodynamic integration. We introduce intrinsic approaches for the analysis of statistical and systematic errors, and provide a detailed picture of the dependence of such errors on the simulation parameters. The results are benchmarked against canonical and parallel tempering simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا