Do you want to publish a course? Click here

Know The Star, Know the Planet. IV. A Stellar Companion to the Host star of the Eccentric Exoplanet HD 8673b

157   0   0.0 ( 0 )
 Added by Lewis Roberts Jr.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

HD 8673 hosts a massive exoplanet in a highly eccentric orbit (e=0.723). Based on two epochs of speckle interferometry a previous publication identified a candidate stellar companion. We observed HD 8673 multiple times with the 10 m Keck II telescope, the 5 m Hale telescope, the 3.63 m AEOS telescope and the 1.5m Palomar telescope in a variety of filters with the aim of confirming and characterizing the stellar companion. We did not detect the candidate companion, which we now conclude was a false detection, but we did detect a fainter companion. We collected astrometry and photometry of the companion on six epochs in a variety of filters. The measured differential photometry enabled us to determine that the companion is an early M dwarf with a mass estimate of 0.33-0.45 M?. The companion has a projected separation of 10 AU, which is one of the smallest projected separations of an exoplanet host binary system. Based on the limited astrometry collected, we are able to constrain the orbit of the stellar companion to a semi-major axis of 35{60 AU, an eccentricity ? 0.5 and an inclination of 75{85?. The stellar companion has likely strongly in uenced the orbit of the exoplanet and quite possibly explains its high eccentricity.



rate research

Read More

The Transiting Exoplanet Survey Satellite (TESS) has already begun to discover what will ultimately be thousands of exoplanets around nearby cool bright stars. These potential host stars must be well-understood to accurately characterize exoplanets at the individual and population levels. We present a catalogue of the chemo-kinematic properties of 2,218,434 stars in the TESS Candidate Target List using survey data from Gaia DR2, APOGEE, GALAH, RAVE, LAMOST, and photometrically-derived stellar properties from SkyMapper. We compute kinematic thin disc, thick disc, and halo membership probabilities for these stars and find that though the majority of TESS targets are in the thin disc, 4% of them reside in the thick disc and <1% of them are in the halo. The TESS Objects of Interest in our sample also display similar contributions from the thin disc, thick disc, and halo with a majority of them being in the thin disc. We also explore metallicity and [alpha/Fe] distributions for each Galactic component and show that each cross-matched survey exhibits metallicity and [alpha/Fe] distribution functions that peak from higher to lower metallicity and lower to higher [alpha/Fe] from the thin disc to the halo. This catalogue will be useful to explore planet occurrence rates, among other things, with respect to kinematics, component-membership, metallicity, or [alpha/Fe].
The Transiting Exoplanet Survey Satellite (TESS) is an all-sky survey mission aiming to search for exoplanets that transit bright stars. The high-quality photometric data of TESS are excellent for the asteroseismic study of solar-like stars. In this work, we present an asteroseismic analysis of the red-giant star HD~222076 hosting a long-period (2.4 yr) giant planet discovered through radial velocities. Solar-like oscillations of HD~222076 are detected around $203 , mu$Hz by TESS for the first time. Asteroseismic modeling, using global asteroseismic parameters as input, yields a determination of the stellar mass ($M_star = 1.12 pm 0.12, M_odot$), radius ($R_star = 4.34 pm 0.21,R_odot$), and age ($7.4 pm 2.7,$Gyr), with precisions greatly improved from previous studies. The period spacing of the dipolar mixed modes extracted from the observed power spectrum reveals that the star is on the red-giant branch burning hydrogen in a shell surrounding the core. We find that the planet will not escape the tidal pull of the star and be engulfed into it within about $800,$Myr, before the tip of the red-giant branch is reached.
With the uniquely high contrast within 0.1 (Delta mag(L) = 5-6.5 magnitudes) available using Sparse Aperture Masking (SAM) with NACO at VLT, we detected asymmetry in the flux from the Herbig Fe star HD 142527 with a barycenter emission situated at a projected separation of 88+/-5 mas (12.8+/-1.5 AU at 145 pc) and flux ratios in H, K, and L of 0.016+/-0.007, 0.012+/-0.008, 0.0086+/-0.0011 respectively (3-sigma errors) relative to the primary star and disk. After extensive closure-phase modeling, we interpret this detection as a close-in, low-mass stellar companion with an estimated mass of ~0.1-0.4 M_Sun. HD 142527 has a complex disk structure, with an inner gap imaged in both the near and mid-IR as well as a spiral feature in the outer disk in the near-IR. This newly detected low-mass stellar companion may provide a critical explanation of the observed disk structure.
This paper presents a detailed and precise study of the characteristics of the Exoplanet Host Star and CoRoT main target HD 52265, as derived from asteroseismic studies. The results are compared with previous estimates, with a comprehensive summary and discussion. The basic method is similar to that previously used by the Toulouse group for solar-type stars. Models are computed with various initial chemical compositions and the computed p-mode frequencies are compared with the observed ones. All models include atomic diffusion and the importance of radiative accelerations is discussed. Several tests are used, including the usual frequency combinations and the fits of the echelle diagrams. The possible surface effects are introduced and discussed. Automatic codes are also used to find the best model for this star (SEEK, AMP) and their results are compared with that obtained with the detailed method. We find precise results for the mass, radius and age of this star, as well as its effective temperature and luminosity. We also give an estimate of the initial helium abundance. These results are important for the characterization of the star-planet system.
An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the presence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 nm and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is $0.512 pm 0.002arcsec$ and for HD 164509 is $0.697 pm 0.002arcsec$. This corresponds to a projected separation of $25.6 pm 1.9$ AU and $36.5 pm 1.9$ AU, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD 2638 and HD 164509 to be $0.483 pm 0.007$ $M_sun$ and $0.416 pm 0.007$ $M_sun$, respectively, and their effective temperatures to be $3570 pm 8$~K and $3450 pm 7$~K, respectively. These results are consistent with the detected companions being late-type M dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا