Do you want to publish a course? Click here

Stellar Companions to the Exoplanet Host Stars HD 2638 and HD 164509

133   0   0.0 ( 0 )
 Added by Stephen Kane
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

An important aspect of searching for exoplanets is understanding the binarity of the host stars. It is particularly important because nearly half of the solar-like stars within our own Milky Way are part of binary or multiple systems. Moreover, the presence of two or more stars within a system can place further constraints on planetary formation, evolution, and orbital dynamics. As part of our survey of almost a hundred host stars, we obtained images at 692 nm and 880 nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. From our survey, we detect stellar companions to HD 2638 and HD 164509. The stellar companion to HD 2638 has been previously detected, but the companion to HD 164509 is a newly discovered companion. The angular separation for HD 2638 is $0.512 pm 0.002arcsec$ and for HD 164509 is $0.697 pm 0.002arcsec$. This corresponds to a projected separation of $25.6 pm 1.9$ AU and $36.5 pm 1.9$ AU, respectively. By employing stellar isochrone models, we estimate the mass of the stellar companions of HD 2638 and HD 164509 to be $0.483 pm 0.007$ $M_sun$ and $0.416 pm 0.007$ $M_sun$, respectively, and their effective temperatures to be $3570 pm 8$~K and $3450 pm 7$~K, respectively. These results are consistent with the detected companions being late-type M dwarfs.



rate research

Read More

Given the frequency of stellar multiplicity in the solar neighborhood, it is important to study the impacts this can have on exoplanet properties and orbital dynamics. There have been numerous imaging survey projects established to detect possible low-mass stellar companions to exoplanet host stars. Here we provide the results from a systematic speckle imaging survey of known exoplanet host stars. In total, 71 stars were observed at 692~nm and 880~nm bands using the Differential Speckle Survey Instrument (DSSI) at the Gemini-North Observatory. Our results show that all but 2 of the stars included in this sample have no evidence of stellar companions with luminosities down to the detection and projected separation limits of our instrumentation. The mass-luminosity relationship is used to estimate the maximum mass a stellar companion can have without being detected. These results are used to discuss the potential for further radial velocity follow-up and interpretation of companion signals.
We report the detections of two substellar companions orbiting around evolved intermediate-mass stars from precise Doppler measurements at Subaru Telescope and Okayama Astrophysical Observatory. HD 145457 is a K0 giant with a mass of 1.9 M_sun and has a planet of minimum mass m_2sini=2.9 M_J orbiting with period of P=176 d and eccentricity of e=0.11. HD 180314 is also a K0 giant with 2.6 M_sun and hosts a substellar companion of m_2sin i=22 M_J, which falls in brown-dwarf mass regime, in an orbit with P=396 d and e=0.26. HD 145457 b is one of the innermost planets and HD 180314 b is the seventh candidate of brown-dwarf-mass companion found around intermediate-mass evolved stars.
We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 $pm$ 0.02 days, a semi-amplitude of 51.1 $pm$ 1.4 ms, an eccentricity of 0.73 $pm$ 0.02 and a derived minimum mass of msini = 0.77 $pm$ 0.02 mjup. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 $pm$ 2.0$^{circ}$; consequently, the planets closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 $pm$ 0.02 years, an orbital eccentricity of 0.12 $pm$ 0.06 and a semi-amplitude of 40.4 $pm$ 1.3 ms. The minimum mass is msini = 2.29 $pm$ 0.16 mjup. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 $pm$ 3.8 days and an eccentricity of 0.26 $pm$ 0.14. The semi-amplitude of 14.2 $pm$ 2.7 ms implies a minimum mass of 0.48 $pm$ 0.09 mjup. The radial velocities of HD 164509 also exhibit a residual linear trend of -5.1 $pm$ 0.7 ms per year, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to sub-millimag levels on their radial velocity periods. This provides strong support for planetary reflex motion as the cause of the radial velocity variations.
The extensive timespan of modern radial velocity surveys have made the discovery of long-period substellar companions more common in recent years, however measuring the true masses of these objects remains challenging. Astrometry from the Gaia mission is expected to provide mass measurements for many of these long-period companions, but this data is not yet available. However, combining proper motion data from Gaia DR2 and the earlier Hipparcos mission makes it possible to measure true masses of substellar companions in favourable cases. In this work, we combine radial velocities with Hipparcos-Gaia astrometry to measure the true masses of two recently discovered long-period substellar companion candidates, HD 92987 B and HD 221420 b. In both cases, we find that the true masses are significantly higher than implied by radial velocities alone. A $2087 pm 19$ m s$^{-1}$ astrometric signal reveals that HD 92987 B is not close to its $17$ $M_J$ minimum mass but is instead a $0.2562 pm 0.0045$ $M_odot$ star viewed at a near-polar orbital inclination, whereas the $22.9 pm 2.2$ $M_J$ HD 221420 b can be plausibly interpreted as a high-mass super-planet or a low-mass brown dwarf. With semi-major axes of $sim$10 AU both companions are interesting targets for direct imaging, and HD 221420 b in particular would be a benchmark metal-rich substellar object if it proves possible to directly detect. Our results demonstrate the power of Hipparcos-Gaia astrometry for studying long-period planet and brown dwarf candidates discovered from radial velocity surveys.
We report the discovery of long-period radial velocity (RV) variations in six intermediate-mass K-giant stars using precise RV measurements. These discoveries are part of the Search for Exoplanets around Northern Circumpolar Stars (SENS) survey being conducted at the Bohyunsan Optical Astronomy Observatory. The nature of the RV variations was investigated by looking for photometric and line shape variations. We can find no variability with the RV period in these quantities and conclude that RV variations are most likely due to unseen sub-stellar companions. Orbital solutions for the six stars yield orbital periods in the range 418-1065 days and minimum masses in the range 1.9-8.5 MJ. These properties are typical on planets around intermediate-mass stars. Our SENS survey so far has about an 8% confirmed planet occurrence rate, and it will provide better statistics on planets around giant stars when the survey is completed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا