Do you want to publish a course? Click here

Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013)

129   0   0.0 ( 0 )
 Added by Akito Tajitsu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of lithium (Li) and its production process have long been an unsettled question in cosmology and astrophysics. Candidates environments of Li production events or sites suggested by previous studies include big bang nucleosynthesis, interactions of energetic cosmic rays with interstellar matter, evolved low mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half of the present Li abundance may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae. However, no direct evidence for the supply of Li from stellar objects to the Galactic medium has yet been found. Here we report on the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, $^{7}$Be, in the near ultraviolet (UV) spectra of the classical nova V339 Del (Nova Delphini 2013). Spectra were obtained 38 to 48 days after the explosion. $^{7}$Be decays to form $^{7}$Li within a short time (half-life 53.22 days). The spectroscopic detection of this fragile isotope implies that it has been created during the nova explosion via the reaction $^{3}mbox{He}(alpha,gamma)^{7}mbox{Be}$, and supports the theoretical prediction that a significant amount of $^{7}$Li could be produced in classical nova explosions. This finding opens a new way to explore $^{7}$Li production in classical novae and provides a clue to the mystery of the Galactic evolution of lithium.



rate research

Read More

We determine the temporal evolution of the luminosity L(WD), radius R(WD) and effective temperature Teff of the white dwarf (WD) pseudophotosphere of V339 Del from its discovery to around day 40. Another main objective was studying the ionization structure of the ejecta. These aims were achieved by modelling the optical/near-IR spectral energy distribution (SED) using low-resolution spectroscopy (3500 - 9200 A), UBVRcIc and JHKLM photometry. During the fireball stage (Aug. 14.8 - 19.9, 2013), Teff was in the range of 6000 - 12000 K, R(WD) was expanding non-uniformly in time from around 66 to around 300 (d/3 kpc) R(Sun), and L(WD) was super-Eddington, but not constant. After the fireball stage, a large emission measure of 1.0-2.0E+62 (d/3 kpc)**2 cm**(-3) constrained the lower limit of L(WD) to be well above the super-Eddington value. The evolution of the H-alpha line and mainly the transient emergence of the Raman-scattered O VI 1032 A line suggested a biconical ionization structure of the ejecta with a disk-like H I region persisting around the WD until its total ionization, around day 40. It is evident that the nova was not evolving according to the current theoretical prediction. The unusual non-spherically symmetric ejecta of nova V339 Del and its extreme physical conditions and evolution during and after the fireball stage represent interesting new challenges for the theoretical modelling of the nova phenomenon.
We present infrared spectroscopy of the classical nova V339 Delphini, obtained over a $sim2$ year period. The infrared emission lines were initially symmetrical, with HWHM velocities of 525 km s$^{-1}$. In later ($tgtrsim77$days, where $t$ is the time from outburst) spectra however, the lines displayed a distinct asymmetry, with a much stronger blue wing, possibly due to obscuration of the receding component by dust. Dust formation commenced at $sim$ day 34.75 at a condensation temperature of $1480pm20$K, consistent with graphitic carbon. Thereafter the dust temperature declined with time as $T_{rm d}propto{t}^{-0.346}$, also consistent with graphitic carbon. The mass of dust initally rose, as a result of an increase in grain size and/or number, peaked at $sim$ day 100, and then declined precipitously. This decline was most likely caused by grain shattering due to electrostatic stress after the dust was exposed to X-radiation. An Appendix summarises Planck Means for carbon, and the determination of grain mass and radius for a carbon dust shell.
141 - N.R. Deacon 2014
Nova Delphini 2013 was identified on the 14th of August 2013 and eventually rose to be a naked eye object. We sought to study the behaviour of the object in the run-up to outburst and to compare it to the pre-outburst photometric characteristics of other novae. We searched the Pan-STARRS 1 datastore to identify pre-outburst photometry of Nova Del 2013 and identified twenty-four observations in the 1.2 years before outburst. The progenitor of Nova Delphini showed variability of a few tenths of a magnitude but did not brighten significantly in comparison with archival plate photometry. We also found that the object did not vary significantly on the approximately half hour timescale between pairs of Pan-STARRS 1 observations.
81 - Augustin Skopal 2019
During the classical nova outburst, the radiation generated by the nuclear burning of hydrogen in the surface layer of a white dwarf (WD) is reprocessed by the outer material into different forms at softer energies, which distribution in the spectrum depends on the nova age. Using the method of multiwavelength modeling the SED we determined physical parameters of the stellar, nebular and dust component of radiation isolated from the spectrum of the classical nova V339 Del from day 35 to day 636 after its explosion. The transition from the iron-curtain phase to the super-soft source phase (days 35 - 72), when the optical brightness dropped by 3-4 mag, the absorbing column density fell by its circumstellar component from $sim 1times 10^{23}$ to $sim 1times 10^{21}$ cm$^{-2}$, and the emission measure decreased from $sim 2times 10^{62}$ to $sim 8.5times 10^{60}$ cm$^{-3}$, was caused by stopping-down the mass-loss from the WD. The day 35 model SED indicated an oblate shape of the WD pseudophotosphere and the presence of the dust located in a slow equatorially concentrated outflow. The dust emission peaked around day 59. Its co-existence with the strong super-soft X-ray source in the day 100 model SED constrained the presence of the disk-like outflow, where the dust can spend a long time. Both the models SED revealed a super-Eddington luminosity of the burning WD at a level of $1-2times 10^{39},(d/4.5{rm kpc})^2$ erg s$^{-1}$, lasting from $sim$day 2 to at least day 100.
Context: Classical nova progenitors are cataclysmic variables and very old novae are observed to match high mass transfer rate and (relatively) long orbital period systems. However, the aftermath of a classical nova has never been studied in detail. Aims: To probe the aftermath of a classical nova explosion in cataclysmic variables and observe as the binary system relaxes to quiescence. Methods: We used multi-wavelength time resolved optical and near-infrared spectroscopy for a bright, well studied classical nova five years after outburst. We were able to disentangle the contribution of the ejecta at this late epoch using its previous characterization, separating the ejecta emission from that of the binary system. Results: We determined the binary orbital period (P=3.76 hr), the system separation and mass ratio (q>=0.17 for an assumed white dwarf mass of 1.2 solar masses). We find evidence of an irradiated secondary star and no unambiguous signature of an accretion disk, although we identify a second emission line source tied to the white dwarf with an impact point. The data are consistent with a bloated white dwarf envelope and the presence of unsettled gas within the white dwarf Roche lobe. Conclusions: At more than 5 years after eruption, it appears that this classical nova has not yet relaxed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا