Do you want to publish a course? Click here

The aftermath of nova Cen 2013 (V1369 Cen)

130   0   0.0 ( 0 )
 Added by Elena Mason
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: Classical nova progenitors are cataclysmic variables and very old novae are observed to match high mass transfer rate and (relatively) long orbital period systems. However, the aftermath of a classical nova has never been studied in detail. Aims: To probe the aftermath of a classical nova explosion in cataclysmic variables and observe as the binary system relaxes to quiescence. Methods: We used multi-wavelength time resolved optical and near-infrared spectroscopy for a bright, well studied classical nova five years after outburst. We were able to disentangle the contribution of the ejecta at this late epoch using its previous characterization, separating the ejecta emission from that of the binary system. Results: We determined the binary orbital period (P=3.76 hr), the system separation and mass ratio (q>=0.17 for an assumed white dwarf mass of 1.2 solar masses). We find evidence of an irradiated secondary star and no unambiguous signature of an accretion disk, although we identify a second emission line source tied to the white dwarf with an impact point. The data are consistent with a bloated white dwarf envelope and the presence of unsettled gas within the white dwarf Roche lobe. Conclusions: At more than 5 years after eruption, it appears that this classical nova has not yet relaxed.



rate research

Read More

Fourteen years after its eruption as a classical nova (CN), V1047 Cen (Nova Cen 2005) began an unusual re-brightening in 2019 April. The amplitude of the brightening suggests that this is a dwarf nova (DN) eruption in a CN system. Very few CNe have had DN eruptions within decades of the main CN outburst. The 14 years separating the CN and DN eruptions of V1047 Cen is the shortest of all instances recorded thus far. Explaining this rapid succession of CN and DN outbursts in V1047 Cen may be challenging within the framework of standard theories for DN outbursts. Following a CN eruption, the mass accretion rate is believed to remain high $(dot{M}sim10^{-8}$M$_odot$yr$^{-1})$ for a few centuries, due to the irradiation of the secondary star by the still-hot surface of the white dwarf. Thus a DN eruption is not expected to occur during this high mass accretion phase as DN outbursts, which result from thermal instabilities in the accretion disk, and arise during a regime of low mass accretion rate $(dot{M}sim10^{-10}$M$_odot$yr$^{-1})$. Here we present near-infrared spectroscopy to show that the present outburst is most likely a DN eruption, and discuss the possible reasons for its early occurrence. Even if the present re-brightening is later shown to be due to a cause other than a DN outburst, the present study provides invaluable documentation of this unusual event.
We present a detailed study of the 2019 outburst of the cataclysmic variable V1047 Cen, which hosted a classical nova eruption in 2005. The peculiar outburst occurred 14 years after the classical nova event, lasted for more than 400 days, and reached an amplitude of around 6 magnitudes in the optical. Early spectral follow-up revealed what could be a dwarf nova (accretion disk instability) outburst in a classical nova system. However, the outburst duration, high velocity ($>$2000 km s$^{-1}$) features in the optical line profiles, luminous optical emission, and the presence of prominent long-lasting radio emission, together suggest a phenomenon more exotic and energetic than a dwarf nova outburst. There are striking similarities between this V1047 Cen outburst and those of combination novae in classical symbiotic stars. We suggest that the outburst may have started as a dwarf nova that led to the accretion of a massive disk, which in turn triggered enhanced nuclear shell burning on the white dwarf and eventually led to generation of a wind/outflow. From optical photometry we find a bf{possible} orbital period of 8.36 days, which supports the combination nova scenario and makes the system an intermediate case between typical cataclysmic variables and classical symbiotic binaries. If true, such a phenomenon would be the first of its kind to occur in a system that has undergone a classical nova eruption and is intermediate between cataclysmic variables and symbiotic binaries.
67 - Thierry Morel 2018
We present a fully self-consistent, line-by-line differential abundance analysis of $alpha$ Cen AB based on high-quality HARPS data. Various line lists are used and analysis strategies implemented to improve the reliability of the results. Abundances of 21 species with a typical precision of 0.02-0.03 dex are reported. We find that the chemical composition of the two stars is not scaled solar (e.g. Na and Ni excess, depletion of neutron-capture elements), but that their patterns are strikingly similar, with a mean abundance difference (A - B) with respect to hydrogen of -0.01$pm$0.04 dex. Much of the scatter may be ascribed to physical effects that are not fully removed through a differential analysis because of the mismatch in parameters between the two components. We derive an age for the system from abundance indicators (e.g. [Y/Mg] and [Y/Al]) that is slightly larger than solar and in agreement with most asteroseismic results. Assuming coeval formation for the three components belonging to the system, this implies an age of about $sim$6 Gyrs for the M dwarf hosting the terrestrial planet Proxima Cen b. After correction for Galactic chemical evolution effects, we find a trend between the abundance ratios and condensation temperature in $alpha$ Cen A akin to that of the Sun. However, taking this finding as evidence for the sequestration of rocky material locked up in planets may be premature given that a clear link between the two phenomena remains to be established. The similarity between the abundance pattern of the binary components argues against the swallowing of a massive planet by one of the stars after the convective zones have shrunk to their present-day sizes.
347 - Ya. V. Pavlenko 2019
We study temporal variations of the emission lines of Halpha, Hepsilon, H and K Ca II, D1 and D2 Na I, 4026 and 5876 A He I in the HARPS spectra of Proxima Centauri across an extended time of 13.2 years, from May 27, 2004, to September 30, 2017. Aims. We analyse the common behaviour and differences in the intensities and profiles of different emission lines in flare and quiet modes of Proxima activity. Methods. We compare the pseudo-equivalent widths (pEW) and profiles of the emission lines in the HARPS high-resolution (R ~ 115,000) spectra observed at the same epochs. Results. All emission lines show variability with a timescale of at least 10 min. The strength of all lines except He I 4026 A correlate with Halpha. During strong flares the `red asymmetry appears in the Halpha emission line indicating the infall of hot condensed matter into the chromosphere with velocities greater than 100 km/s disturbing chromospheric layers. As a result, the strength of the Ca II lines anti-correlates with Halpha during strong flares. The He I lines at 4026 and 5876 A appear in the strong flares. The cores of D1 and D2 Na I lines are also seen in emission. During the minimum activity of Proxima Centauri, Ca II lines and Hepsilon almost disappear while the blue part of the Na I emission lines is affected by the absorption in the extending and condensing flows. Conclusions. We see different behaviour of emission lines formed in the flare regions and chromosphere. Chromosphere layers of Proxima Cen are likely heated by the flare events; these layers are cooled in the `non-flare mode. The self-absorption structures in cores of our emission lines vary with time due to the presence of a complicated system of inward and outward matter flows in the absorbing layers.
220 - David A. Bohlender , J.B. Rice , 2010
The helium-peculiar star a Cen exhibits line profile variations of elements such as iron, nitrogen and oxygen in addition to its well-known extreme helium variability. New high S/N, high-resolution spectra are used to perform a quantitative measurement of the abundances of the star and determine the relation of the concentrations of the heavier elements on the surface of the star to the helium concentration and the magnetic field orientation. Doppler images have been created using programs described in earlier papers by Rice and others. An alternative surface abundance mapping code has been used to model the helium line variations after our Doppler imaging of certain individual helium lines produced mediocre results. We confirm the long-known existence of helium-rich and helium-poor hemispheres on a Cen and we measure a difference of more than two orders of magnitude in helium abundance from one side of the star to the other. Helium is overabundant by a factor of about 5 over much of the helium-rich hemisphere. Of particular note is our discovery that the helium-poor hemisphere has a very high abundance of helium-3, approximately equal to the helium-4 abundance. a Cen is therefore a new member of the small group of helium-3 stars and the first well-established magnetic member of the class. For the three metals investigated here, there are two strong concentrations of abundance near the equator consistent with the positive magnetic maximum and two somewhat weaker concentrations of abundance where the helium concentration is centered and roughly where the negative peak of the magnetic field would be found. Another strong concentration is found near the equator and this is not explainable in terms of any simple symmetry with the helium abundance or the apparent magnetic field main polar locations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا