Do you want to publish a course? Click here

Discrete Holomorphicity in the Chiral Potts Model

121   0   0.0 ( 0 )
 Added by Yacine Ikhlef
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct lattice parafermions for the $Z(N)$ chiral Potts model in terms of quasi-local currents of the underlying quantum group. We show that the conservation of the quantum group currents leads to twisted discrete-holomorphicity (DH) conditions for the parafermions. At the critical Fateev-Zamolodchikov point the parafermions are the usual ones, and the DH conditions coincide with those found previously by Rajabpour and Cardy. Away from the critical point, we show that our twisted DH conditions can be understood as deformed lattice current conservation conditions for an underlying perturbed conformal field theory in both the general $Ngeq 3$ and $N=2$ Ising cases.



rate research

Read More

216 - Yacine Ikhlef 2010
We review the exact results on the various critical regimes of the antiferromagnetic $Q$-state Potts model. We focus on the Bethe Ansatz approach for generic $Q$, and describe in each case the effective degrees of freedom appearing in the continuum limit.
We extend a recent analysis of the $q$-states Potts model on an ensemble of random planar graphs with $pleqslant q$ allowed, equally weighted, spins on a connected boundary. In this paper we explore the $(q<4,pleqslant q)$ parameter space of finite-sheeted resolvents and derive the associated critical exponents. By definition a value of $q$ is allowed if there is a $p=1$ solution, and we reproduce the long-known result that $q= 2(1+cos{frac{m}{n} pi})$ with $m,n$ coprime. In addition we find that there are two distinct sequences of solutions, one of which contains $p=2$ and $p=q/2$ while the other does not. The boundary condition $p=3$ appears only for $q=3$ which also has a $p=3/2$ boundary condition; we conjecture that this new solution corresponds in the scaling limit to the New boundary condition, discovered on the flat lattice by Affleck et al. We also explore Kramers-Wannier duality for $q=3$ in this context and explicitly construct the known boundary conditions; we show that the mixed boundary condition is dual to a boundary condition on dual graphs that corresponds to Affleck et als identification of the New boundary condition on fixed lattices. On the other hand we find that the mixed boundary condition of the dual, and the corresponding New boundary condition of the original theory are not described by conventional resolvents.
We compute the partition function of the $q$-states Potts model on a random planar lattice with $pleq q$ allowed, equally weighted colours on a connected boundary. To this end, we employ its matrix model representation in the planar limit, generalising a result by Voiculescu for the addition of random matrices to a situation beyond free probability theory. We show that the partition functions with $p$ and $q-p$ colours on the boundary are related algebraically. Finally, we investigate the phase diagram of the model when $0leq qleq 4$ and comment on the conformal field theory description of the critical points.
We revisit in this paper the problem of connectivity correlations in the Fortuin-Kasteleyn cluster representation of the two-dimensional $Q$-state Potts model conformal field theory. In a recent work [M. Picco, S. Ribault and R. Santachiara, SciPost Phys. 1, 009 (2016); arXiv:1607.07224], results for the four-point functions were obtained, based on the bootstrap approach, combined with simple conjectures for the spectra in the different fusion channels. In this paper, we test these conjectures using lattice algebraic considerations combined with extensive numerical studies of correlations on infinite cylinders. We find that the spectra in the scaling limit are much richer than those proposed in [arXiv:1607.07224]: they involve in particular fields with conformal weight $h_{r,s}$ where $r$ is dense on the real axis.
Monodromy matrices of the $tau_2$ model are known to satisfy a Yang--Baxter equation with a six-vertex $R$-matrix as the intertwiner. The commutation relations of the elements of the monodromy matrices are completely determined by this $R$-matrix. We show the reason why in the superintegrable case the eigenspace is degenerate, but not in the general case. We then show that the eigenspaces of special CSOS models descending from the chiral Potts model are also degenerate. The existence of an $L({mathfrak{sl}}_2)$ quantum loop algebra (or subalgebra) in these models is established by showing that the Serre relations hold for the generators. The highest weight polynomial (or the Drinfeld polynomial) of the representation is obtained by using the method of Baxter for the superintegrable case. As a byproduct, the eigenvalues of all such CSOS models are given explicitly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا