Do you want to publish a course? Click here

Sums of Random Matrices and the Potts Model on Random Planar Maps

60   0   0.0 ( 0 )
 Added by Benjamin Niedner
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the partition function of the $q$-states Potts model on a random planar lattice with $pleq q$ allowed, equally weighted colours on a connected boundary. To this end, we employ its matrix model representation in the planar limit, generalising a result by Voiculescu for the addition of random matrices to a situation beyond free probability theory. We show that the partition functions with $p$ and $q-p$ colours on the boundary are related algebraically. Finally, we investigate the phase diagram of the model when $0leq qleq 4$ and comment on the conformal field theory description of the critical points.



rate research

Read More

We extend a recent analysis of the $q$-states Potts model on an ensemble of random planar graphs with $pleqslant q$ allowed, equally weighted, spins on a connected boundary. In this paper we explore the $(q<4,pleqslant q)$ parameter space of finite-sheeted resolvents and derive the associated critical exponents. By definition a value of $q$ is allowed if there is a $p=1$ solution, and we reproduce the long-known result that $q= 2(1+cos{frac{m}{n} pi})$ with $m,n$ coprime. In addition we find that there are two distinct sequences of solutions, one of which contains $p=2$ and $p=q/2$ while the other does not. The boundary condition $p=3$ appears only for $q=3$ which also has a $p=3/2$ boundary condition; we conjecture that this new solution corresponds in the scaling limit to the New boundary condition, discovered on the flat lattice by Affleck et al. We also explore Kramers-Wannier duality for $q=3$ in this context and explicitly construct the known boundary conditions; we show that the mixed boundary condition is dual to a boundary condition on dual graphs that corresponds to Affleck et als identification of the New boundary condition on fixed lattices. On the other hand we find that the mixed boundary condition of the dual, and the corresponding New boundary condition of the original theory are not described by conventional resolvents.
102 - Jeremie Unterberger 2016
We consider a general Langevin dynamics for the one-dimensional N-particle Coulomb gas with confining potential $V$ at temperature $beta$. These dynamics describe for $beta=2$ the time evolution of the eigenvalues of $Ntimes N$ random Hermitian matrices. The equilibrium partition function -- equal to the normalization constant of the Laughlin wave function in fractional quantum Hall effect -- is known to satisfy an infinite number of constraints called Virasoro or loop constraints. We introduce here a dynamical generating function on the space of random trajectories which satisfies a large class of constraints of geometric origin. We focus in this article on a subclass induced by the invariance under the Schrodinger-Virasoro algebra.
We solve the q-state Potts model with anti-ferromagnetic interactions on large random lattices of finite coordination. Due to the frustration induced by the large loops and to the local tree-like structure of the lattice this model behaves as a mean field spin glass. We use the cavity method to compute the temperature-coordination phase diagram and to determine the location of the dynamic and static glass transitions, and of the Gardner instability. We show that for q>=4 the model possesses a phenomenology similar to the one observed in structural glasses. We also illustrate the links between the positive and the zero-temperature cavity approaches, and discuss the consequences for the coloring of random graphs. In particular we argue that in the colorable region the one-step replica symmetry breaking solution is stable towards more steps of replica symmetry breaking.
We construct lattice parafermions for the $Z(N)$ chiral Potts model in terms of quasi-local currents of the underlying quantum group. We show that the conservation of the quantum group currents leads to twisted discrete-holomorphicity (DH) conditions for the parafermions. At the critical Fateev-Zamolodchikov point the parafermions are the usual ones, and the DH conditions coincide with those found previously by Rajabpour and Cardy. Away from the critical point, we show that our twisted DH conditions can be understood as deformed lattice current conservation conditions for an underlying perturbed conformal field theory in both the general $Ngeq 3$ and $N=2$ Ising cases.
123 - G. Borot , J. Bouttier , E.Guitter 2012
We use the nested loop approach to investigate loop models on random planar maps where the domains delimited by the loops are given two alternating colors, which can be assigned different local weights, hence allowing for an explicit Z_2 domain symmetry breaking. Each loop receives a non local weight n, as well as a local bending energy which controls loop turns. By a standard cluster construction that we review, the Q = n^2 Potts model on general random maps is mapped to a particular instance of this problem with domain-non-symmetric weights. We derive in full generality a set of coupled functional relations for a pair of generating series which encode the enumeration of loop configurations on maps with a boundary of a given color, and solve it by extending well-known complex analytic techniques. In the case where loops are fully-packed, we analyze in details the phase diagram of the model and derive exact equations for the position of its non-generic critical points. In particular, we underline that the critical Potts model on general random maps is not self-dual whenever Q eq 1. In a model with domain-symmetric weights, we also show the possibility of a spontaneous domain symmetry breaking driven by the bending energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا