Do you want to publish a course? Click here

Strength of the dominant scatterer in graphene on silicon oxide

247   0   0.0 ( 0 )
 Added by Jyoti Katoch
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A large variability of carrier mobility of graphene-based field effect transistors hampers graphene science and technology. We determine the scattering strength of the dominant scatterer responsible for the variability of graphene-based transistors on silicon oxide. The strength of the scatterer is found to be more consistent with charged impurities than with resonant impurities.



rate research

Read More

We have measured the impact of atomic hydrogen adsorption on the electronic transport properties of graphene sheets as a function of hydrogen coverage and initial, pre-hydrogenation field-effect mobility. Our results are compatible with hydrogen adsorbates inducing intervalley mixing by exerting a short-range scattering potential. The saturation coverages for different devices are found to be proportional to their initial mobility, indicating that the number of native scatterers is proportional to the saturation coverage of hydrogen. By extrapolating this proportionality, we show that the field-effect mobility can reach $1.5 times 10^4$ cm$^2$/V sec in the absence of the hydrogen-adsorbing sites. This affinity to hydrogen is the signature of the most dominant type of native scatterers in graphene-based field-effect transistors on SiO$_2$.
This article presents a review of epitaxial graphene on silicon carbide, from fabrication to properties, put in the context of other forms of graphene.
Experimentally produced graphene sheets exhibit a wide range of mobility values. Both extrinsic charged impurities and intrinsic ripples (corrugations) have been suggested to induce long-range disorder in graphene and could be a candidate for the dominant source of disorder. Here, using large-scale molecular dynamics and quantum transport simulations, we find that the hopping disorder and the gauge and scalar potentials induced by the ripples are short-ranged, in strong contrast with predictions by continuous models, and the transport fingerprints of the ripple disorder are very different from those of charged impurities. We conclude that charged impurities are the dominant source of disorder in most graphene samples, whereas scattering by ripples is mainly relevant in the high carrier density limit of ultraclean graphene samples (with a charged impurity concentration < 10 ppm) at room and higher temperatures.
Defects in solid commonly limit mechanical performance of the material. However, recent measurements reported that the extraordinarily high strength of graphene is almost retained with the presence of grain boundaries. We clarify in this work that lattice defects in the grain boundaries and distorted geometry thus induced define the mechanical properties characterized under specific loading conditions. Atomistic simulations and theoretical analysis show that tensile tests measure in-plane strength that is governed by defect-induced stress buildup, while nanoindentation probes local strength under the indenter tip and bears additional geometrical effects from warping. These findings elucidate the failure mechanisms of graphene under realistic loading conditions and assess the feasibility of abovementioned techniques in quantifying the strength of graphene, and suggest that mechanical properties of low-dimensional materials could be tuned by implanting defects and geometrical distortion they leads to.
Oscillator-strength sum rule in light-induced transitions is one general form of quantum-mechanical identities. Although this sum rule is well established in equilibrium photo-physics, an experimental corroboration for the validation of the sum rule in a nonequilibrium regime has been a long-standing unexplored question. The simple band structure of graphene is an ideal system for investigating this question due to the linear Dirac-like energy dispersion. Here, we employed both ultrafast terahertz and optical spectroscopy to directly monitor the transient oscillator-strength balancing between quasi-free low-energy oscillators and high-energy Fermi-edge ones. Upon photo-excitation of hot Dirac fermions, we observed that the ultrafast depletion of high-energy oscillators precisely complements the increased terahertz absorption oscillators. Our results may provide an experimental priori to understand, for example, the intrinsic free-carrier dynamics to the high-energy photo-excitation, responsible for optoelectronic operation such as graphene-based phototransistor or solar-energy harvesting devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا