Do you want to publish a course? Click here

Tuning the scattering mechanism in three-dimensional Dirac semimetal Cd$_{3}$As$_{2}$

171   0   0.0 ( 0 )
 Added by Arnab Pariari Kumar
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

To probe the charge scattering mechanism in Cd$_{3}$As$_{2}$ single crystal, we have analyzed the temperature and magnetic field dependence of the Seebeck coefficient ($S$). The large saturation value of $S$ at high field clearly demonstrates the linear energy dispersion of three-dimensional Dirac fermion. A wide tunability of the charge scattering mechanism has been realized by varying the strength of the magnetic field and carrier density via In doping. With the increase in magnetic field, the scattering time crosses over from being nearly energy independent to a regime of linear dependence. On the other hand, the scattering time enters into the inverse energy-dependent regime and the Fermi surface strongly modifies with 2% In doping at Cd site. With further increase in In content from 2 to 4%, we did not observe any Shubnikov-de Haas oscillation up to 9 T field, but the magnetoresistance is found to be quite large as in the case of undoped sample.



rate research

Read More

We present a study on magnetotransport in films of the topological Dirac semimetal Cd$_{3}$As$_{2}$ doped with Sb grown by molecular beam epitaxy. In our weak antilocalization analysis, we find a significant enhancement of the spin-orbit scattering rate, indicating that Sb doping leads to a strong increase of the pristine band-inversion energy. We discuss possible origins of this large enhancement by comparing Sb-doped Cd$_{3}$As$_{2}$ with other compound semiconductors. Sb-doped Cd$_{3}$As$_{2}$ will be a suitable system for further investigations and functionalization of topological Dirac semimetals.
Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. In atomic gases, high-harmonic radiation is produced via a three-step process of ionization, acceleration, and recollision by strong-field infrared laser. This mechanism has been intensively investigated in the extreme ultraviolet and soft X-ray regions, forming the basis of attosecond research. In solid-state materials, which are characterized by crystalline symmetry and strong interactions, yielding of harmonics has just recently been reported. The observed high-harmonic generation was interpreted with fundamentally different mechanisms, such as interband tunneling combined with dynamical Bloch oscillations, intraband thermodynamics and nonlinear dynamics, and many-body electronic interactions. Here, in a distinctly different context of three-dimensional Dirac semimetal, we report on experimental observation of high-harmonic generation up to the seventh order driven by strong-field terahertz pulses. The observed non-perturbative high-harmonic generation is interpreted as a generic feature of terahertz-field driven nonlinear intraband kinetics of Dirac fermions. We anticipate that our results will trigger great interest in detection, manipulation, and coherent control of the nonlinear response in the vast family of three-dimensional Dirac and Weyl materials.
330 - L. P. He , Y. T. Jia , S. J. Zhang 2015
The recently discovered Dirac and Weyl semimetals are new members of topological materials. Starting from them, topological superconductivity may be achieved, e.g. by carrier doping or applying pressure. Here we report high-pressure resistance and X-ray diffraction study of the three-dimensional topological Dirac semimetal Cd3As2. Superconductivity with Tc ~ 2.0 K is observed at 8.5 GPa. The Tc keeps increasing to about 4.0 K at 21.3 GPa, then shows a nearly constant pressure dependence up to the highest pressure 50.9 GPa. The X-ray diffraction measurements reveal a structure phase transition around 3.5 GPa. Our observation of superconductivity in pressurized topological Dirac semimetal Cd3As2 provides a new candidate for topological superconductor, as argued in a recent point contact study and a theoretical work.
Cd$_3$As$_2$ is one of the prototypical topological Dirac semimetals. Here, we manipulate the band inversion responsible for the emergence of Dirac nodes by alloying Cd$_3$As$_2$ with topologically trivial Zn$_3$As$_2$. We observe the expected topological phase transition around a Zn concentration of $xsim 1$ while the carrier density monotonically decreases as $x$ is increased. For larger $x$, the thermoelectric figure of merit exhibits comparably large values exceeding 0.3 at room temperature, due to the combined effects of a strong enhancement of the thermopower, an only moderate increase of the resistivity, and a suppression of the thermal conductivity. Complementary quantum-oscillation data and optical-conductivity measurements allow to infer that the enhanced thermoelectric performance is due to a flattening of the band structure in the higher-$x$ region in Cd$_{3-x}$Zn$_x$As$_2$.
Dirac semi-metals show a linear electronic dispersion in three dimension described by two copies of the Weyl equation, a theoretical description of massless relativistic fermions. At the surface of a crystal, the breakdown of fermion chirality is expected to produce topological surface states without any counterparts in high-energy physics nor conventional condensed matter systems, the so-called Fermi Arcs. Here we present Shubnikov-de Haas oscillations involving the Fermi Arc states in Focused Ion Beam prepared microstructures of Cd$_3$As$_2$. Their unusual magnetic field periodicity and dependence on sample thickness can be well explained by recent theoretical work predicting novel quantum paths weaving the Fermi Arcs together with chiral bulk states, forming Weyl orbits. In contrast to conventional cyclotron orbits, these are governed by the chiral bulk dynamics rather than the common momentum transfer due to the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا