Do you want to publish a course? Click here

Inverse-Compton Emission from Clusters of Galaxies: Predictions for ASTRO-H

111   0   0.0 ( 0 )
 Added by Richard Bartels
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The intra-cluster medium of several galaxy clusters hosts large-scale regions of diffuse synchrotron radio emission, known as radio halos and relics, which demonstrate the presence of magnetic fields and relativistic electrons in clusters. These relativistic electrons should also emit X-rays through inverse-Compton scattering off of cosmic microwave background photons. The detection of such a non-thermal X-ray component, together with the radio measurement, would permit to clearly separate the magnetic field from the relativistic electron distribution as the inverse-Compton emission is independent from the magnetic field in the cluster. However, non-thermal X-rays have not been conclusively detected from any cluster of galaxies so far. In this paper, for the first time, we model the synchrotron and inverse-Compton emission of all clusters hosting radio halos and relics for which the spectral index can be determined. We provide constraints on the volume-average magnetic field by comparing with current X-ray measurements. We then estimate the maximum volume-average magnetic field that will allow the detection of inverse-Compton hard X-rays by the ASTRO-H satellite. We found that several clusters are good targets for ASTRO-H to detect their inverse-Compton emission, in particular that corresponding to radio relics, and propose a list of promising targets for which ASTRO-H can test $ge1$~$mu$G magnetic fields. We conclude that future hard X-ray observations by the already-operating NuSTAR and the soon-to-be-launched ASTRO-H definitely have the potential to shed light on the long-sought non-thermal hard-X-ray emission in clusters of galaxies.



rate research

Read More

164 - Ryo Yamazaki , Abraham Loeb 2015
Shocks around clusters of galaxies accelerate electrons which upscatter the Cosmic Microwave Background photons to higher-energies. We use an analytical model to calculate this inverse Compton (IC) emission, taking into account the effects of additional energy losses via synchrotron and Coulomb scattering. We find that the surface brightness of the optical IC emission increases with redshift and halo mass. The IC emission surface brightness, 32--34~mag~arcsec$^{-2}$, for massive clusters is potentially detectable by the newly developed Dragonfly Telephoto Array.
Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes-curvature radiation from millisecond pulsar magnetospheres vs. inverse Compton emission from relativistic pairs launched into the globular cluster environment by millisecond pulsars-has long been unclear. To address this, we search for evidence of inverse Compton emission in 8-year Fermi-LAT data from the directions of 157 Milky Way globular clusters. We find a mildly statistically significant (3.8$sigma$) correlation between the measured globular cluster gamma-ray luminosities and their photon field energy densities. However, this may also be explained by a hidden correlation between the photon field densities and the stellar encounter rates of globular clusters. Analysed in toto, we demonstrate that the gamma-ray emission of globular clusters can be resolved spectrally into two components: i) an exponentially cut-off power law and ii) a pure power law. The latter component-which we uncover at a significance of 8.2$sigma$-is most naturally interpreted as inverse Compton emission by cosmic-ray electrons and positrons injected by millisecond pulsars. We find the luminosity of this inverse Compton component is comparable to, or slightly smaller than, the luminosity of the curved component, suggesting the fraction of millisecond pulsar spin-down luminosity into relativistic leptons is similar to the fraction of the spin-down luminosity into prompt magnetospheric radiation.
175 - T. Kitayama 2014
The next generation X-ray observatory ASTRO-H will open up a new dimension in the study of galaxy clusters by achieving for the first time the spectral resolution required to measure velocities of the intracluster plasma, and extending at the same time the spectral coverage to energies well beyond 10 keV. This white paper provides an overview of the capabilities of ASTRO-H for exploring gas motions in galaxy clusters including their cosmological implications, the physics of AGN feedback, dynamics of cluster mergers as well as associated high-energy processes, chemical enrichment of the intracluster medium, and the nature of missing baryons and unidentified dark matter.
The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Background and contamination uncertainties present in the data of non-focusing observatories result in lower sensitivity to IC emission and a greater chance of false detection. We present 266ks NuSTAR observations of the Bullet cluster, detected from 3-30 keV. NuSTARs unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well - but not perfectly - described as an isothermal plasma with kT=14.2+/-0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT~15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1e-12 erg/s/cm^2 (50-100 keV), implying a lower limit on B>0.2{mu}G, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future.
Analyses of Fermi Gamma-Ray Space Telescope data have revealed a source of excess diffuse gamma rays towards the Galactic center that extends up to roughly $pm$20 degrees in latitude. The leading theory postulates that this GeV excess is the aggregate emission from a large number of faint millisecond pulsars (MSPs). The electrons and positrons ($e^pm$) injected by this population could produce detectable inverse-Compton (IC) emissions by up-scattering ambient photons to gamma-ray energies. In this work, we calculate such IC emissions using GALPROP. A triaxial three-dimensional model of the bulge stars obtained from a fit to infrared data is used as a tracer of the putative MSP population. This model is compared against one in which the MSPs are spatially distributed as a Navarro-Frenk-White squared profile. We show that the resulting spectra for both models are indistinguishable, but that their spatial morphologies have salient recognizable features. The IC component above $sim$TeV energies carries information on the spatial morphology of the injected $e^pm$. Such differences could potentially be used by future high-energy gamma-ray detectors such as the Cherenkov Telescope Array to provide a viable multiwavelength handle for the MSP origin of the GeV excess.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا