No Arabic abstract
The Narrow-line Seyfert I galaxy, 1H0707-495, has been well observed in the 0.3-10 keV band, revealing a dramatic drop in flux in the iron K alpha band, a strong soft excess, and short timescale reverberation lags associated with these spectral features. In this paper, we present the first results of a deep 250 ks NuSTAR observation of 1H0707-495, which includes the first sensitive observations above 10 keV. Even though the NuSTAR observations caught the source in an extreme low-flux state, the Compton hump is still significantly detected. NuSTAR, with its high effective area above 7 keV, clearly detects the drop in flux in the iron K alpha band, and by comparing these observations with archival XMM-Newton observations, we find that the energy of this drop increases with increasing flux. We discuss possible explanations for this, the most likely of which is that the drop in flux is the blue wing of the relativistically broadened iron K alpha emission line. When the flux is low, the coronal source height is low, thus enhancing the most gravitationally redshifted emission.
The narrow-line Seyfert 1 galaxy 1H0707-495 has previously been identified as showing time lags between flux variations in the soft- (0.3-1 keV) and medium-energy (1-4 keV) X-ray bands that oscillate between positive and negative values as a function of the frequency of the mode of variation. Here we measure and analyse the lags also between a harder X-ray band (4-7.5 keV) and the soft and medium bands, using existing XMM-Newton data, and demonstrate that the entire spectrum of lags, considering both the full energy range, 0.3-7.5 keV, and the full frequency range, 10^-5 < nu < 10^-2 Hz, are inconsistent with previous claims of arising as reverberation associated with the inner accretion disk. Instead we demonstrate that a simple reverberation model, in which scattering or reflection is present in all X-ray bands, explains the full set of lags without requiring any ad hoc explanation for the time lag sign changes. The range of time delays required to explain the observed lags extends up to about 1800 s in the hard band. The results are consistent with reverberation caused by scattering of X-rays passing through an absorbing medium whose opacity decreases with increasing energy and that partially-covers the source. A high covering factor of absorbing and scattering circumnuclear material is inferred.
We present the results of a 500 ksec long XMM-Newton observation and a 120 ksec long quasi-simultaneous Chandra observation of the Narrow Line Seyfert 1 galaxy 1H0707-495 performed in 2010 September. Consistent with earlier results by Fabian et al. (2009) and Zoghbi et al. (2010), the spectrum is found to be dominated by relativistically broadened reflection features from an ionised accretion disc around a maximally rotating black hole. Even though the spectra changed between this observation and earlier XMM-Newton observations, the physical parameters of the black hole and accretion disc (i.e., spin and inclination) are consistent between both observations. We show that this reflection spectrum is slightly modified by absorption in a mildly relativistic, highly ionised outflow which changed velocity from around 0.11c to 0.18c between 2008 January and 2010 September. Alternative models, in which the spectral shape is dominated by absorption, lead to spectral fits of similar quality, however, the parameters inferred for the putative absorber are unphysical.
We use a 380 ks XMM-Newton high-resolution RGS spectrum to look for narrow spectral features from the nuclear environment of 1H0707-495. We do not find any evidence of a line-of-sight ionized wind (warm absorber). We do, however, detect broad emission lines, of width ~5000 km s^-1, consistent with O VIII Ly-alpha, N VII Ly-alpha, C VI Ly-alpha and a Fe XIX/Fe XX/Ne IX He-alpha blend. Intriguingly, these lines have both blueshifted and redshifted components, whose velocity shifts are consistent with an origin in an accretion disc at ~1600 R_g from the black hole. The features can be interpreted as the narrow line cores of the disc reflection spectrum, thus providing independent support for the discline interpretation of the X-ray spectrum of 1H0707-495. We discuss the relevance of our findings for the `X-ray broad line region in other Seyferts, and for the origins of the optical broad line region itself.
The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Background and contamination uncertainties present in the data of non-focusing observatories result in lower sensitivity to IC emission and a greater chance of false detection. We present 266ks NuSTAR observations of the Bullet cluster, detected from 3-30 keV. NuSTARs unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well - but not perfectly - described as an isothermal plasma with kT=14.2+/-0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT~15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1e-12 erg/s/cm^2 (50-100 keV), implying a lower limit on B>0.2{mu}G, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future.
We report the discovery of RX J2317.8-4422 in an extremely low X-ray flux state by the Neil Gehrels Swift observatory in 2014 April/May. In total, the low-energy X-ray emission dropped by a factor 100. We have carried out multi-wavelength follow-up observations of this Narrow-Line Seyfert 1 galaxy. Here we present observations with Swift, XMM-Newton, and NuSTAR in October and November 2014 and further monitoring observations by Swift from 2015 to 2018. Compared with the beginning of the Swift observations in 2005, in the November 2014 XMM and NuSTAR observation RX J2317--4422.8 dropped by a factor of about 80 in the 0.3-10 keV band. While the high-state Swift observations can be interpreted by a partial covering absorption model with a moderate absorption column density of $N_H=5.4times 10^{22}$ cm$^{-2}$ or blurred reflection, due to dominating background at energies above 2 keV the low-state XMM data can not distinguish between different multi-component models and were adequately fit with a single power-law model. We discuss various scenarios like a long-term change of the accretion rate or absorption as the cause for the strong variability seen in RX J2317.8--4422.