No Arabic abstract
We use a 380 ks XMM-Newton high-resolution RGS spectrum to look for narrow spectral features from the nuclear environment of 1H0707-495. We do not find any evidence of a line-of-sight ionized wind (warm absorber). We do, however, detect broad emission lines, of width ~5000 km s^-1, consistent with O VIII Ly-alpha, N VII Ly-alpha, C VI Ly-alpha and a Fe XIX/Fe XX/Ne IX He-alpha blend. Intriguingly, these lines have both blueshifted and redshifted components, whose velocity shifts are consistent with an origin in an accretion disc at ~1600 R_g from the black hole. The features can be interpreted as the narrow line cores of the disc reflection spectrum, thus providing independent support for the discline interpretation of the X-ray spectrum of 1H0707-495. We discuss the relevance of our findings for the `X-ray broad line region in other Seyferts, and for the origins of the optical broad line region itself.
The narrow-line Seyfert 1 galaxy 1H0707-495 has previously been identified as showing time lags between flux variations in the soft- (0.3-1 keV) and medium-energy (1-4 keV) X-ray bands that oscillate between positive and negative values as a function of the frequency of the mode of variation. Here we measure and analyse the lags also between a harder X-ray band (4-7.5 keV) and the soft and medium bands, using existing XMM-Newton data, and demonstrate that the entire spectrum of lags, considering both the full energy range, 0.3-7.5 keV, and the full frequency range, 10^-5 < nu < 10^-2 Hz, are inconsistent with previous claims of arising as reverberation associated with the inner accretion disk. Instead we demonstrate that a simple reverberation model, in which scattering or reflection is present in all X-ray bands, explains the full set of lags without requiring any ad hoc explanation for the time lag sign changes. The range of time delays required to explain the observed lags extends up to about 1800 s in the hard band. The results are consistent with reverberation caused by scattering of X-rays passing through an absorbing medium whose opacity decreases with increasing energy and that partially-covers the source. A high covering factor of absorbing and scattering circumnuclear material is inferred.
Since the discovery of the first broad iron-K line in 1995 from the Seyfert Galaxy MCG--6-30-15, broad iron-K lines have been found in several other Seyfert galaxies, from accreting stellar mass black holes and even from accreting neutron stars. The iron-K line is prominent in the reflection spectrum created by the hard X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron-L line emission should be detectable when the iron abundance is high. Here we report the first discovery of both iron-K and L emission, using XMM-Newton observations of the Narrow-Line Seyfert 1 Galaxy 1H0707-495. The bright Fe-L emission has enabled us, for the first time, to detect a reverberation lag of 30 s between the direct X-ray continuum and its reflection from matter falling into the hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light-minute, from the event horizon of a rapidly-spinning, massive black hole.
We present the results of a 500 ksec long XMM-Newton observation and a 120 ksec long quasi-simultaneous Chandra observation of the Narrow Line Seyfert 1 galaxy 1H0707-495 performed in 2010 September. Consistent with earlier results by Fabian et al. (2009) and Zoghbi et al. (2010), the spectrum is found to be dominated by relativistically broadened reflection features from an ionised accretion disc around a maximally rotating black hole. Even though the spectra changed between this observation and earlier XMM-Newton observations, the physical parameters of the black hole and accretion disc (i.e., spin and inclination) are consistent between both observations. We show that this reflection spectrum is slightly modified by absorption in a mildly relativistic, highly ionised outflow which changed velocity from around 0.11c to 0.18c between 2008 January and 2010 September. Alternative models, in which the spectral shape is dominated by absorption, lead to spectral fits of similar quality, however, the parameters inferred for the putative absorber are unphysical.
X-ray reflection off the accretion disc surrounding a black hole, together with the associated broad iron K$alpha$ line, has been widely used to constrain the innermost accretion-flow geometry and black hole spin. Some recent measurements have revealed steep reflection emissivity profiles in a number of active galactic nuclei and X-ray binaries. We explore the physically motivated conditions that give rise to the observed steep disc-reflection emissivity profiles. We perform a set of simulations based on the configuration of a possible future high-resolution X-ray mission. Computations are carried out for typical X-ray bright Seyfert-1 galaxies. We find that steep emissivity profiles with $qsim 4-5$ (where the emissivity is $epsilon (r) propto r^{-q}$) are produced considering either i) a lamp-post scenario where a primary compact X-ray source is located close to the black hole, or ii) the radial dependence of the disc ionisation state. We also highlight the role of the reflection angular emissivity: the radial emissivity index $q$ is overestimated when the standard limb-darkening law is used to describe the data. Very steep emissivity profiles with $q geq 7$ are naturally obtained by applying reflection models that take into account radial profile $xi (r)$ of the disc ionisation induced by a compact X-ray source located close to the central black hole.
The Broad Emission Lines (BELs) in spectra of type 1 Active Galactic Nuclei (AGN) can be very complex, indicating a complex Broad Line Region (BLR) geometry. According to the standard unification model one can expect an accretion disk around a supermassive black hole in all AGN. Therefore, a disk geometry is expected in the BLR. However, a small fraction of BELs show double-peaked profiles which indicate the disk geometry. Here, we discuss a two-component model, assuming an emission from the accretion disk and one additional emission from surrounding region. We compared the modeled BELs with observed ones (mostly broad H$alpha$ and H$beta$ profiles) finding that the model can well describe single-peaked and double-peaked observed broad line profiles.