Do you want to publish a course? Click here

Revisiting the relationship between 6 {mu}m and 2-10 keV continuum luminosities of AGN

127   0   0.0 ( 0 )
 Added by Silvia Mateos
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have determined the relation between the AGN luminosities at rest-frame 6 {mu}m associated to the dusty torus emission and at 2-10 keV energies using a complete, X-ray flux limited sample of 232 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The objects have intrinsic X-ray luminosities between 10^42 and 10^46 erg/s and redshifts from 0.05 to 2.8. The rest-frame 6 {mu}m luminosities were computed using data from the Wide-Field Infrared Survey Explorer and are based on a spectral energy distribution decomposition into AGN and galaxy emission. The best-fit relationship for the full sample is consistent with being linear, L_6 {mu}m $propto$ L_2-10 keV^0.99$pm$0.032, with intrinsic scatter, ~0.35 dex in log L_6 {mu}m. The L_6 {mu}m/L_2-10 keV luminosity ratio is largely independent on the line-of-sight X-ray absorption. Assuming a constant X-ray bolometric correction, the fraction of AGN bolometric luminosity reprocessed in the mid-IR decreases weakly, if at all, with the AGN luminosity, a finding at odds with simple receding torus models. Type 2 AGN have redder mid-IR continua at rest-frame wavelengths <12 {mu}m and are overall ~1.3-2 times fainter at 6 {mu}m than type 1 AGN at a given X-ray luminosity. Regardless of whether type 1 and type 2 AGN have the same or different nuclear dusty toroidal structures, our results imply that the AGN emission at rest-frame 6 {mu}m is not isotropic due to self-absorption in the dusty torus, as predicted by AGN torus models. Thus, AGN surveys at rest-frame 6 {mu}m are subject to modest dust obscuration biases.



rate research

Read More

The dielectric function of interstellar dust material is modeled using observations of extinction and polarization in the infrared, together with estimates for the mass of interstellar dust. The astrodust material is assumed to be a mix of amorphous silicates and other materials, including hydrocarbons producing an absorption feature at 3.4$mu$m. The detailed shape of the 10$mu$m polarization profile depends on the assumed porosity and grain shape, but the 10$mu$m spectropolarimetric data are not yet good enough to clearly favor one shape over another, nor to constrain the porosity. The expected 3.4$mu$m feature polarization is consistent with existing upper limits, provided the 3.4$mu$m absorption is preferentially located in grain surface layers; a separate population of non-aligned carbonaceous grains is not required. We predict the 3.4$mu$m polarization feature to be $(Delta p)_{3.4mu{rm m}}/p(10mu{rm m})approx 0.016$, just below current upper limits. Polarization by the same grains at submm wavelengths is also calculated.
We study the evidence for a connection between active galactic nuclei (AGN) fueling and star formation by investigating the relationship between the X-ray luminosities of AGN and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGN with $10^{41}<L_mathrm{X}<10^{44} $ erg s$^{-1}$ at $0.2 < z < 1.2$ in the PRIMUS redshift survey. We find AGN in galaxies with a wide range of SFR at a given $L_X$. We do not find a significant correlation between SFR and the observed instantaneous $L_X$ for star forming AGN host galaxies. However, there is a weak but significant correlation between the mean $L_mathrm{X}$ and SFR of detected AGN in star forming galaxies, which likely reflects that $L_mathrm{X}$ varies on shorter timescales than SFR. We find no correlation between stellar mass and $L_mathrm{X}$ within the AGN population. Within both populations of star forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star forming galaxy $sim2-3$ more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGN, but AGN are often hosted by quiescent galaxies.
The Submillimetre Common User Bolometer Array 2 (SCUBA-2) is the James Clerk Maxwell Telescopes continuum imager, operating simultaneously at 450 and 850~$mu$m. SCUBA-2 was commissioned in 2009--2011 and since that time, regular observations of point-like standard sources have been performed whenever the instrument is in use. Expanding the calibrator observation sample by an order of magnitude compared to previous work, in this paper we derive updated opacity relations at each wavelength for a new atmospheric-extinction correction, analyze the Flux-Conversion Factors (FCFs) used to convert instrumental units to physical flux units as a function of date and observation time, present information on the beam profiles for each wavelength, and update secondary-calibrator source fluxes. Between 07:00 and 17:00 UTC, the portion of the night that is most stable to temperature gradients that cause dish deformation, the total-flux uncertainty and the peak-flux uncertainty measured at 450~$mu$m are found to be 14% and 17%, respectively. Measured at 850~$mu$m, the total-flux and peak-flux uncertainties are 6%, and 7%, respectively. The analysis presented in this work is applicable to all SCUBA-2 projects observed since 2011.
We examine two positions, ON1 and ON2, within the Ophiuchus cloud LDN 1688 using observations made with the ISOPHOT instrument aboard the ISO satellite. The data include mid-IR spectra (~6-12{mu}m) and several photometric bands up to 200{mu}m. The data probe the emission from molecular PAH-type species, transiently-heated Very Small Grains (VSGs), and large classical dust grains. We compare the observations to earlier studies, especially those carried out towards an isolated translucent cloud in Chamaeleon (Paper I). The spectra towards the two LDN 1688 positions are very similar to each other, in spite of position ON1 having a larger column density and probably being subjected to a stronger radiation field. The ratios of the mid-IR features are similar to those found in other diffuse and translucent clouds. Compared to paper I, the 7.7/11.3{mu}m band ratios are lower, ~2.0, at both LDN 1688 positions. A continuum is detected in the ~10{mu}m region. This is stronger towards the position ON1 but still lower than on any of the sightlines in Paper I. The far-infrared opacities are higher than for diffuse medium. The value of the position ON2, {tau}200/N(H) = 3.9 x 10^{-25} cm^2/H, is twice the value found for ON1. The radiation field of LDN 1688 is dominated by the two embedded B type double stars, {rho} Oph AB and HD 147889, with an additional contribution from the Upper Sco OB association. The strong heating is reflected in the high colour temperature, ~24 K, of the large grain emission. Radiative transfer modelling confirms a high level of the radiation field and points to an increased abundance of PAH grains. However, when the hardening of the radiation field caused by the local B-stars is taken into account, the observations can be fitted with almost no change to the standard dust models. However, all the examined models underestimate the level of the mid-IR continuum.
The XMM-LSS, XMM-COSMOS, and XMM-CDFS surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and PSF. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of AGN and its evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 10^42-10^46 erg/s, and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power-law with LADE or LDDE evolution, are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the 15-parameter extended LDDE model recently proposed by Ueda et al., and find that this extension is not supported by our data. The strength of our method is that it provides: un-absorbed non-parametric estimates; credible intervals for luminosity function parameters; model choice according to which one has more predictive power for future data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا