We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanathan and P. Horodecki, Phys. Rev. Lett. 112, 040404 (2014)] is not sufficient for revealing state-independent contextuality.
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if and only if} its marginal POVMs are jointly measurable. The proof suggests to employ the negatives of ${W}$-measure as an indicator for non-joint measurability. By applying triangle inequalities to the negativity, we derive joint measurability criteria for dichotomic and trichotomic variables. Also, we propose an operational test for the joint measurability in sequential measurement scenario.
We show that, regardless of the dimension of the Hilbert space, there exists no set of rays revealing state-independent contextuality with less than 13 rays. This implies that the set proposed by Yu and Oh in dimension three [Phys. Rev. Lett. 108, 030402 (2012)] is actually the minimal set in quantum theory. This contrasts with the case of Kochen-Specker sets, where the smallest set occurs in dimension four.
Contextuality is a natural generalization of nonlocality which does not need composite systems or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum mechanics there exist scenarios where the contextual behavior is independent of the quantum state. We show that the quest for an optimal inequality separating quantum from classical noncontextual correlations in an state-independent manner admits an exact solution, as it can be formulated as a linear program. We introduce the noncontextuality polytope as a generalization of the locality polytope, and apply our method to identify two different tight optimal inequalities for the most fundamental quantum scenario with state-independent contextuality.
Quantum state smoothing is a technique for estimating the quantum state of a partially observed quantum system at time $tau$, conditioned on an entire observed measurement record (both before and after $tau$). However, this smoothing technique requires an observer (Alice, say) to know the nature of the measurement records that are unknown to her in order to characterize the possible true states for Bobs (say) systems. If Alice makes an incorrect assumption about the set of true states for Bobs system, she will obtain a smoothed state that is suboptimal, and, worse, may be unrealizable (not corresponding to a valid evolution for the true states) or even unphysical (not represented by a state matrix $rhogeq0$). In this paper, we review the historical background to quantum state smoothing, and list general criteria a smoothed quantum state should satisfy. Then we derive, for the case of linear Gaussian quantum systems, a necessary and sufficient constraint for realizability on the covariance matrix of the true state. Naturally, a realizable covariance of the true state guarantees a smoothed state which is physical. It might be thought that any putative true covariance which gives a physical smoothed state would be a realizable true covariance, but we show explicitly that this is not so. This underlines the importance of the realizabilty constraint.
Quantum supermaps are a higher-order generalization of quantum maps, taking quantum maps to quantum maps. It is known that any completely positive, trace non-increasing (CPTNI) map can be performed as part of a quantum measurement. By providing an explicit counterexample we show that, instead, not every quantum supermap sending a quantum channel to a CPTNI map can be realized in a measurement on quantum channels. We find that the supermaps that can be implemented in this way are exactly those transforming quantum channels into CPTNI maps even when tensored with the identity supermap. We link this result to the fact that the principle of causality fails in the theory of quantum supermaps.