No Arabic abstract
Quantum state smoothing is a technique for estimating the quantum state of a partially observed quantum system at time $tau$, conditioned on an entire observed measurement record (both before and after $tau$). However, this smoothing technique requires an observer (Alice, say) to know the nature of the measurement records that are unknown to her in order to characterize the possible true states for Bobs (say) systems. If Alice makes an incorrect assumption about the set of true states for Bobs system, she will obtain a smoothed state that is suboptimal, and, worse, may be unrealizable (not corresponding to a valid evolution for the true states) or even unphysical (not represented by a state matrix $rhogeq0$). In this paper, we review the historical background to quantum state smoothing, and list general criteria a smoothed quantum state should satisfy. Then we derive, for the case of linear Gaussian quantum systems, a necessary and sufficient constraint for realizability on the covariance matrix of the true state. Naturally, a realizable covariance of the true state guarantees a smoothed state which is physical. It might be thought that any putative true covariance which gives a physical smoothed state would be a realizable true covariance, but we show explicitly that this is not so. This underlines the importance of the realizabilty constraint.
We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanathan and P. Horodecki, Phys. Rev. Lett. 112, 040404 (2014)] is not sufficient for revealing state-independent contextuality.
We study pullback attractors of non-autonomous non-compact dynamical systems generated by differential equations with non-autonomous deterministic as well as stochastic forcing terms. We first introduce the concepts of pullback attractors and asymptotic compactness for such systems. We then prove a sufficient and necessary condition for existence of pullback attractors. We also introduce the concept of complete orbits for this sort of systems and use these special solutions to characterize the structures of pullback attractors. For random systems containing periodic deterministic forcing terms, we show the pullback attractors are also periodic. As an application of the abstract theory, we prove the existence of a unique pullback attractor for Reaction-Diffusion equations on $R^n$ with both deterministic and random external terms. Since Sobolev embeddings are not compact on unbounded domains, the uniform estimates on the tails of solutions are employed to establish the asymptotic compactness of solutions.
This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quantum Wiener process, and the controller is a linear time invariant system governed by a stochastic differential equation. The control objective is to stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential functional (QEF) which penalizes the plant variables and the controller output. We combine a frequency-domain representation of the QEF growth rate, obtained recently, with variational techniques and establish first-order necessary conditions of optimality for the state-space matrices of the controller.
Quantum state smoothing is a technique to construct an estimate of the quantum state at a particular time, conditioned on a measurement record from both before and after that time. The technique assumes that an observer, Alice, monitors part of the environment of a quantum system and that the remaining part of the environment, unobserved by Alice, is measured by a secondary observer, Bob, who may have a choice in how he monitors it. The effect of Bobs measurement choice on the effectiveness of Alices smoothing has been studied in a number of recent papers. Here we expand upon the Letter which introduced linear Gaussian quantum (LGQ) state smoothing [Phys. Rev. Lett., 122, 190402 (2019)]. In the current paper we provide a more detailed derivation of the LGQ smoothing equations and address an open question about Bobs optimal measurement strategy. Specifically, we develop a simple hypothesis that allows one to approximate the optimal measurement choice for Bob given Alices measurement choice. By optimal choice we mean the choice for Bob that will maximize the purity improvement of Alices smoothed state compared to her filtered state (an estimated state based only on Alices past measurement record). The hypothesis, that Bob should choose his measurement so that he observes the back-action on the system from Alices measurement, seems contrary to ones intuition about quantum state smoothing. Nevertheless we show that it works even beyond a linear Gaussian setting.
What can one do with a given tunable quantum device? We provide complete symmetry criteria deciding whether some effective target interaction(s) can be simulated by a set of given interactions. Symmetries lead to a better understanding of simulation and permit a reasoning beyond the limitations of the usual explicit Lie closure. Conserved quantities induced by symmetries pave the way to a resource theory for simulability. On a general level, one can now decide equality for any pair of compact Lie algebras just given by their generators without determining the algebras explicitly. Several physical examples are illustrated, including entanglement invariants, the relation to unitary gate membership problems, as well as the central-spin model.