Do you want to publish a course? Click here

Beating oscillations of magneto-optical spectra in simple hexagonal graphite

138   0   0.0 ( 0 )
 Added by Ming-Fa Lin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magneto-optical properties of simple hexagonal graphite exhibit rich beating oscillations, which are dominated by the field strength and photon energy. The former has a strong effect on the intensity, the energy range of the beating and the number of groups, and the latter modulates the total group numbers of the oscillation structures. The single-particle and collective excitations are simultaneously presented in the magnetoreflectance spectra and can be precisely distinguished. For the loss function and reflectance, the beating pattern of the first group displays stronger intensities and broader energy range than other groups. Simple hexagonal graphite possesses unique magneto-optical characteristics that can serve to identify other bulk graphites.



rate research

Read More

We have studied the propagation characteristics of spin wave modes in a permalloy stripe by time-resolved magneto-optical Kerr effect techniques. We observe a beating interference pattern in the time domain under the influence of an electrical square pulse excitation at the center of the stripe. We also probe the non-reciprocal behavior of propagating spin waves with a dependence on the external magnetic field. Spatial dependence studies show that localized edge mode spin waves have a lower frequency than spin waves in the center of the stripe, due to the varying magnetization vector across the width of the stripe.
The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magnetoexcitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
236 - Yuki Fuseya , Masao Ogata , 2011
A mechanism is proposed based on the Kubo formula to generate a spin-polarized magneto-optical current of Dirac electrons in solids which have strong spin-orbit interactions such as bismuth. The ac current response functions are calculated in the isotropic Wolff model under an external magnetic field, and the selection rules for Dirac electrons are obtained. By using the circularly polarized light and tuning its frequency, one can excite electrons concentrated in the spin-polarized lowest Landau level when the chemical potential locates in the band gap, so that spin-polarization in the magneto-optical current can be achieved.
The phase of quantum magneto-oscillations is often associated with the Berry phase and is widely used to argue in favor of topological nontriviality of the system (Berry phase $2pi n+pi$). Nevertheless, the experimentally determined value may deviate from $2pi n+pi$ arbitrarily, therefore more care should be made analyzing the phase of magneto-oscillations to distinguish trivial systems from nontrivial. In this paper we suggest two simple mechanisms dramatically affecting the experimentally observed value of the phase in three-dimensional topological insulators: (i) magnetic field dependence of the chemical potential, and (ii) possible nonuniformity of the system. These mechanisms are not limited to topological insulators and can be extended to other topologically trivial and non-trivial systems.
262 - C. Sun , J. Kono , Y. Cho 2009
We have performed a systematic magneto-optical Kerr spectroscopy study of GaMnAs with varying Mn densities as a function of temperature, magnetic field, and photon energy. Unlike previous studies, the magnetization easy axis was perpendicular to the sample surface, allowing us to take remanent polar Kerr spectra in the absence of an external magnetic field. The remanent Kerr angle strongly depended on the photon energy, exhibiting a large positive peak at $sim1.7$ eV. This peak increased in intensity and blue-shifted with Mn doping and further blue-shifted with annealing. Using a 30-band ${bf kcdot p}$ model with antiferromagnetic $s,p$-$d$ exchange interaction, we calculated the dielectric tensor of GaMnAs in the interband transition region, assuming that our samples are in the metallic regime and the impurity band has merged with the valence band. We successfully reproduced the observed spectra without emph{ad hoc} introduction of the optical transitions originated from impurity states in the band gap. These results lead us to conclude that above-bandgap magneto-optical Kerr rotation in ferromagnetic GaMnAs is predominantly determined by interband transitions between the conduction and valence bands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا