Do you want to publish a course? Click here

On diagonal actions of branch groups and the corresponding characters

108   0   0.0 ( 0 )
 Added by Artem Dudko
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We introduce notions of absolutely non-free and perfectly non-free group actions and use them to study the associated unitary representations. We show that every weakly branch group acts absolutely non-freely on the boundary of the associated rooted tree. Using this result and the symmetrized diagonal actions we construct for every countable branch group infinitely many different ergodic perfectly non-free actions, infinitely many II$_1$-factor representations, and infinitely many continuous ergodic invariant random subgroups.



rate research

Read More

Let $q$ be a power of a prime $p$, let $G$ be a finite Chevalley group over $mathbb{F}_q$ and let $U$ be a Sylow $p$-subgroup of $G$; we assume that $p$ is not a very bad prime for $G$. We explain a procedure of reduction of irreducible complex characters of $U$, which leads to an algorithm whose goal is to obtain a parametrization of the irreducible characters of $U$ along with a means to construct these characters as induced characters. A focus in this paper is determining the parametrization when $G$ is of type $mathrm{F}_4$, where we observe that the parametrization is uniform over good primes $p > 3$, but differs for the bad prime $p = 3$. We also explain how it has been applied for all groups of rank $4$ or less.
In this paper we study finite p-solvable groups having irreducible complex characters chi in Irr(G) which take roots of unity values on the p-singular elements of G.
Let $BS(1,n) =< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ ngeq 2$. It is known that BS(1,n) is isomorphic to the group generated by the two affine maps of the real line: $f_0(x) = x + 1$ and $h_0(x) = nx $. This paper deals with the dynamics of actions of BS(1,n) on closed orientable surfaces. We exhibit a smooth BS(1,n) action without finite orbits on $TT ^2$, we study the dynamical behavior of it and of its $C^1$-pertubations and we prove that it is not locally rigid. We develop a general dynamical study for faithful topological BS(1,n)-actions on closed surfaces $S$. We prove that such actions $<f,h | h circ f circ h^{-1} = f^n>$ admit a minimal set included in $fix(f)$, the set of fixed points of $f$, provided that $fix(f)$ is not empty. When $S= TT^2$, we show that there exists a positive integer $N$, such that $fix(f^N)$ is non-empty and contains a minimal set of the action. As a corollary, we get that there are no minimal faithful topological actions of BS(1,n) on $TT^2$. When the surface $S$ has genus at least 2, is closed and orientable, and $f$ is isotopic to identity, then $fix(f)$ is non empty and contains a minimal set of the action. Moreover if the action is $C^1$ then $fix(f)$ contains any minimal set.
81 - Olga Lukina 2018
In this paper, we study the actions of profinite groups on Cantor sets which arise from representations of Galois groups of certain fields of rational functions. Such representations are associated to polynomials, and they are called profinite iterated monodromy groups. We are interested in a topological invariant of such actions called the asymptotic discriminant. In particular, we give a complete classification by whether the asymptotic discriminant is stable or wild in the case when the polynomial generating the representation is quadratic. We also study different ways in which a wild asymptotic discriminant can arise.
Let $G$ be a finite group and let $p$ be a prime. Assume that there exists a prime $q$ dividing $|G|$ which does not divide the order of any $p$-local subgroup of $G$. If $G$ is $p$-solvable or $q$ divides $p-1$, then $G$ has a $p$-block of defect zero. The case $q=2$ is a well-known result by Brauer and Fowler.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا