No Arabic abstract
In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides $M$N$X$ ($M$ = Ti, Zr, Hf; $X$ = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron-phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors.
We report a strategy to induce superconductivity in the BiS$_2$-based compound LaOBiS$_2$. Instead of substituting F for O, we increase the charge-carrier density (electron dope) via substitution of tetravalent Th$^{+4}$, Hf$^{+4}$, Zr$^{+4}$, and Ti$^{+4}$ for trivalent La$^{+3}$. It is found that both the LaOBiS$_2$ and ThOBiS$_2$ parent compounds are bad metals and that superconductivity is induced by electron doping with emph{T$_c$} values of up to 2.85 K. The superconducting and normal states were characterized by electrical resistivity, magnetic susceptibility, and heat capacity measurements. We also demonstrate that reducing the charge-carrier density (hole doping) via substitution of divalent Sr$^{+2}$ for La$^{+3}$ does not induce superconductivity.
We calculate the strength of the effective onsite Coulomb interaction (Hubbard $U$) in two-dimensional (2D) transition-metal (TM) dihalides MX$_2$ and trihalides MX$_3$ (M=Ti, V, Cr, Mn, Fe, Co, Ni; X=Cl, Br, I) from first principles using the constrained random-phase approximation. The correlated subspaces are formed from $t_{2g}$ or $e_g$ bands at the Fermi energy. Elimination of the efficient screening taking place in these narrow bands gives rise to sizable interaction parameters U between the localized $t_{2g}$ ($e_g$) electrons. Due to this large Coulomb interaction, we find $U/W >1$ (with the band width $W$) in most TM halides, making them strongly correlated materials. Among the metallic TM halides in paramagnetic state, the correlation strength $U/W$ reaches a maximum in NiX$_2$ and CrX$_3$ with values much larger than the corresponding values in elementary TMs and other TM compounds. Based on the Stoner model and the calculated $U$ and $J$ values, we discuss the tendency of the electron spins to order ferromagnetically.
It has been predicted theoretically and indirectly confirmed experimentally that single-layer CrX$_3$ (X=Cl, Br, I) might be the prototypes of topological magnetic insulators (TMI). In this work, by using first-principles calculations combined with atomistic spin dynamics we provide a complete picture of the magnetic interactions and magnetic excitations in CrX$_3$. The focus is here on the two most important aspects for the actual realization of TMI, namely the relativistic magnetic interactions and the finite-size (edge) effects. We compute the full interaction tensor, which includes both Kitaev and Dzyaloshinskii-Moriya terms, which are considered as the most likely mechanisms for stabilizing topological magnons. First, we instigate the properties of bulk CrI$_3$ and compare the simulated magnon spectrum with the experimental data [Phys. Rev. X 8, 041028 (2018)]. Our results suggest that a large size of topological gap, seen in experiment ($approx$ 4 meV), can not be explained by considering pair-wise spin interactions only. We identify several possible reasons for this disagreement and suggest that a pronounced magneto-elastic coupling should be expected in this class of materials. The magnetic interactions in the monolayers of CrX$_3$ are also investigated. The strength of the anisotropic interactions is shown to scale with the position of halide atom in the Periodic Table, the heavier the element the larger is the anisotropy. Comparing the magnons for the bulk and single-layer CrI$_3$, we find that the size of the topological gap becomes smaller in the latter case. Finally, we investigate finite-size effects in monolayers and demonstrate that the anisotropic couplings between Cr atoms close to the edges are much stronger than those in ideal periodic structure. This should have impact on the dynamics of the magnon edge modes in this class of materials.
The family of two-dimensional transition metal carbides, so called MXenes, has recently found new members with ordered double transition metals M$_2$M$$C$_2$, where M$$ and M$$ stand for transition metals. Here, using a set of first-principles calculations, we demonstrate that some of the newly added members, oxide M$_2$M$$C$_2$ (M$$= Mo, W; M$$= Ti, Zr, Hf) MXenes, are topological insulators. The nontrivial topological states of the predicted MXenes are revealed by the $Z_2$ index, which is evaluated from the parities of the occupied bands below the Fermi energy at time reversal invariant momenta, and also by the presence of the edge states. The predicted M$_2$M$$C$_2$O$_2$ MXenes show nontrivial gaps in the range of 0.041 -- 0.285 eV within the generalized gradient approximation and 0.119 -- 0.409 eV within the hybrid functional. The band gaps are induced by the spin-orbit coupling within the degenerate states with $d_{x^2-y^2}$ and $d_{xy}$ characters of M$$ and M$$, while the band inversion occurs at the $Gamma$ point among the degenerate $d_{x^2-y^2}$/$d_{xy}$ orbitals and a non-degenerate $d_{3z^2-r^2}$ orbital, which is driven by the hybridization of the neighboring orbitals. The phonon dispersion calculations find that the predicted topological insulators are structurally stable. The predicted W-based MXenes with large band gaps might be suitable candidates for many topological applications at room temperature. In addition, we study the electronic structures of thicker ordered double transition metals M$_2$M$_2$C$_3$O$_2$ (M$$= Mo, W; M$$= Ti, Zr, Hf) and find that they are nontrivial topological semimetals.
Layered transition-metal chalcogenides (Zr,Hf)GeTe$_{4}$ were screened out from database of Atomwork as a candidate for pressure-induced superconductivity due to their narrow band gap and high density of state near the Fermi level. The (Zr,Hf)GeTe$_{4}$ samples were synthesized in single crystal and then the compositional ratio, crystal structures, and valence states were investigated via energy dispersive spectrometry, single crystal X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The pressure-induced superconductivity in both crystals were first time reported by using a diamond anvil cell with a boron-doped diamond electrode and an undoped diamond insulating layer. The maximum superconducting transition temperatures of ZrGeTe$_{4}$ and HfGeTe$_{4}$ were 6.5 K under 57 GPa and 6.6 K under 60 GPa, respectively.