Do you want to publish a course? Click here

Swapping algebra, Virasoro algebra and discrete integrable system

295   0   0.0 ( 0 )
 Added by Zhe Sun
 Publication date 2014
  fields
and research's language is English
 Authors Zhe Sun




Ask ChatGPT about the research

We induce a Poisson algebra ${cdot,cdot}_{mathcal{C}_{n,N}}$ on the configuration space $mathcal{C}_{n,N}$ of $N$ twisted polygons in $mathbb{RP}^{n-1}$ from the swapping algebra cite{L12}, which is found coincide with Faddeev-Takhtajan-Volkov algebra for $n=2$. There is another Poisson algebra ${cdot,cdot}_{S2}$ on $mathcal{C}_{2,N}$ induced from the first Adler-Gelfand-Dickey Poissson algebra by Miura transformation. By observing that these two Poisson algebras are asymptotically related to the dual to the Virasoro algebra, finally, we prove that ${cdot,cdot}_{mathcal{C}_{2,N}}$ and ${cdot,cdot}_{S2}$ are Schouten commute.



rate research

Read More

107 - Zhe Sun 2019
The rank $n$ swapping algebra is the Poisson algebra defined on the ordered pairs of points on a circle using the linking numbers, where a subspace of $(mathbb{K}^n times mathbb{K}^{n*})^r/operatorname{GL}(n,mathbb{K})$ is its geometric mode. In this paper, we find an injective Poisson homomorphism from the Poisson algebra on Grassmannian $G_{n,r}$ arising from boundary measurement map to the rank $n$ swapping fraction algebra.
189 - Zhe Sun 2014
F. Labourie [arXiv:1212.5015] characterized the Hitchin components for $operatorname{PSL}(n, mathbb{R})$ for any $n>1$ by using the swapping algebra, where the swapping algebra should be understood as a ring equipped with a Poisson bracket. We introduce the rank $n$ swapping algebra, which is the quotient of the swapping algebra by the $(n+1)times(n+1)$ determinant relations. The main results are the well-definedness of the rank $n$ swapping algebra and the cross-ratio in its fraction algebra. As a consequence, we use the sub fraction algebra of the rank $n$ swapping algebra generated by these cross-ratios to characterize the $operatorname{PSL}(n, mathbb{R})$ Hitchin component for a fixed $n>1$. We also show the relation between the rank $2$ swapping algebra and the cluster $mathcal{X}_{operatorname{PGL}(2,mathbb{R}),D_k}$-space.
150 - Zhe Sun 2015
The {em rank $n$ swapping algebra} is a Poisson algebra defined on the set of ordered pairs of points of the circle using linking numbers, whose geometric model is given by a certain subspace of $(mathbb{K}^n times mathbb{K}^{n*})^r/operatorname{GL}(n,mathbb{K})$. For any ideal triangulation of $D_k$---a disk with $k$ points on its boundary, using determinants, we find an injective Poisson algebra homomorphism from the fraction algebra generated by the Fock--Goncharov coordinates for $mathcal{X}_{operatorname{PGL}_n,D_k}$ to the rank $n$ swapping multifraction algebra for $r=kcdot(n-1)$ with respect to the (Atiyah--Bott--)Goldman Poisson bracket and the swapping bracket. This is the building block of the general surface case. Two such injective Poisson algebra homomorphisms related to two ideal triangulations $mathcal{T}$ and $mathcal{T}$ are compatible with each other under the flips.
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.
In this paper, we study a certain deformation $D$ of the Virasoro algebra that was introduced and called $q$-Virasoro algebra by Nigro,in the context of vertex algebras. Among the main results, we prove that for any complex number $ell$, the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of quasi modules for a certain vertex algebra of affine type. We also prove that the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of $mathbb{Z}$-equivariant $phi$-coordinated quasi modules for the same vertex algebra. In the process, we introduce and employ a certain infinite dimensional Lie algebra which is defined in terms of generators and relations and then identified explicitly with a subalgebra of $mathfrak{gl}_{infty}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا