Do you want to publish a course? Click here

Ternary Virasoro - Witt Algebra

438   0   0.0 ( 0 )
 Added by Cosmas Zachos
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.



rate research

Read More

We find that a compatible graded left-symmetric algebra structure on the Witt algebra induces an indecomposable module of the Witt algebra with 1-dimensional weight spaces by its left multiplication operators. From the classification of such modules of the Witt algebra, the compatible graded left-symmetric algebra structures on the Witt algebra are classified. All of them are simple and they include the examples given by Chapoton and Kupershmidt. Furthermore, we classify the central extensions of these graded left-symmetric algebras which give the compatible graded left-symmetric algebra structures on the Virasoro algebra. They coincide with the examples given by Kupershmidt.
n-ary algebras have played important roles in mathematics and mathematical physics. The purpose of this paper is to construct a deformation of Virasoro-Witt n-algebra based on an oscillator realization with two independent parameters (p, q) and investigate its n-Lie subalgebra.
305 - Xiufu Zhang , Shaobin Tan 2009
In this paper, Whittaker modules for the Schrodinger-Virasoro algebra $mathfrak{sv}$ are defined. The Whittaker vectors and the irreducibility of the Whittaker modules are studied. $mathfrak{sv}$ has a triangular decomposition according to the Cartan algebra $mathfrak{h}:$ $$mathfrak{sv}=mathfrak{sv}^{-}oplusmathfrak{h}oplusmathfrak{sv}^{+}.$$ For any Lie algebra homomorphism $psi:mathfrak{sv}^{+}tomathbb{C}$, we can define Whittaker modules of type $psi.$ When $psi$ is nonsingular, the Whittaker vectors, the irreducibility and the classification of Whittaker modules are completely determined. When $psi$ is singular, by constructing some special Whittaker vectors, we find that the Whittaker modules are all reducible. Moreover, we get some more precise results for special $psi$.
We revisit the Virasoro constraints and explore the relation to the Hirota bilinear equations. We furthermore investigate and provide the solution to non-homogeneous Virasoro constraints, namely those coming from matrix models whose domain of integration has boundaries. In particular, we provide the example of Hermitean matrices with positive eigenvalues in which case one can find a solution by induction on the rank of the matrix model.
We show how q-Virasoro constraints can be derived for a large class of (q,t)-deformed eigenvalue matrix models by an elementary trick of inserting certain q-difference operators under the integral, in complete analogy with full-derivative insertions for beta-ensembles. From free-field point of view the models considered have zero momentum of the highest weight, which leads to an extra constraint T_{-1} Z = 0. We then show how to solve these q-Virasoro constraints recursively and comment on the possible applications for gauge theories, for instance calculation of (supersymmetric) Wilson loop averages in gauge theories on D^2 cross S^1 and S^3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا