No Arabic abstract
The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and daily price changes of a set of 100 highly capitalized US stocks traded in the period 2012-2013. Sentiment analysis or browsing activity when taken alone have very small or no predictive power. Conversely, when considering a news signal where in a given time interval we compute the average sentiment of the clicked news, weighted by the number of clicks, we show that for nearly 50% of the companies such signal Granger-causes hourly price returns. Our result indicates a wisdom-of-the-crowd effect that allows to exploit users activity to identify and weigh properly the relevant and surprising news, enhancing considerably the forecasting power of the news sentiment.
Coronavirus (COVID-19) creates fear and uncertainty, hitting the global economy and amplifying the financial markets volatility. The oil price reaction to COVID-19 was gradually accommodated until March 09, 2020, when, 49 days after the release of the first coronavirus monitoring report by the World Health Organization (WHO), Saudi Arabia floods the market with oil. As a result, international prices drop with more than 20% in one single day. Against this background, the purpose of this paper is to investigate the impact of COVID-19 numbers on crude oil prices, while controlling for the impact of financial volatility and the United States (US) economic policy uncertainty. Our ARDL estimation shows that the COVID-19 daily reported cases of new infections have a marginal negative impact on the crude oil prices in the long run. Nevertheless, by amplifying the financial markets volatility, COVID-19 also has an indirect effect on the recent dynamics of crude oil prices.
Mid-price movement prediction based on limit order book (LOB) data is a challenging task due to the complexity and dynamics of the LOB. So far, there have been very limited attempts for extracting relevant features based on LOB data. In this paper, we address this problem by designing a new set of handcrafted features and performing an extensive experimental evaluation on both liquid and illiquid stocks. More specifically, we implement a new set of econometrical features that capture statistical properties of the underlying securities for the task of mid-price prediction. Moreover, we develop a new experimental protocol for online learning that treats the task as a multi-objective optimization problem and predicts i) the direction of the next price movement and ii) the number of order book events that occur until the change takes place. In order to predict the mid-price movement, the features are fed into nine different deep learning models based on multi-layer perceptrons (MLP), convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks. The performance of the proposed method is then evaluated on liquid and illiquid stocks, which are based on TotalView-ITCH US and Nordic stocks, respectively. For some stocks, results suggest that the correct choice of a feature set and a model can lead to the successful prediction of how long it takes to have a stock price movement.
In order to understand the origin of stock price jumps, we cross-correlate high-frequency time series of stock returns with different news feeds. We find that neither idiosyncratic news nor market wide news can explain the frequency and amplitude of price jumps. We find that the volatility patterns around jumps and around news are quite different: jumps are followed by increased volatility, whereas news tend on average to be followed by lower volatility levels. The shape of the volatility relaxation is also markedly different in the two cases. Finally, we provide direct evidence that large transaction volumes are_not_ responsible for large price jumps. We conjecture that most price jumps are induced by order flow fluctuations close to the point of vanishing liquidity.
In recent years, Bitcoin price prediction has attracted the interest of researchers and investors. However, the accuracy of previous studies is not well enough. Machine learning and deep learning methods have been proved to have strong prediction ability in this area. This paper proposed a method combined with Ensemble Empirical Mode Decomposition (EEMD) and a deep learning method called long short-term memory (LSTM) to research the problem of next-day Bitcoin price forecast.
We propose three different data-driven approaches for pricing European-style call options using supervised machine-learning algorithms. These approaches yield models that give a range of fair prices instead of a single price point. The performance of the models are tested on two stock market indices: NIFTY$50$ and BANKNIFTY from the Indian equity market. Although neither historical nor implied volatility is used as an input, the results show that the trained models have been able to capture the option pricing mechanism better than or similar to the Black-Scholes formula for all the experiments. Our choice of scale free I/O allows us to train models using combined data of multiple different assets from a financial market. This not only allows the models to achieve far better generalization and predictive capability, but also solves the problem of paucity of data, the primary limitation of using machine learning techniques. We also illustrate the performance of the trained models in the period leading up to the 2020 Stock Market Crash (Jan 2019 to April 2020).