No Arabic abstract
Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature, Tc, of the material. In this paper we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density Fp by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m^3 at 22.5T and 4.2 K, the highest value ever reported in any 122 phase.
The angular-dependent critical current density, Jc(theta), and the upper critical field, Hc2(theta), of epitaxial Ba(Fe1-xCox)2As2 thin films have been investigated. No Jc(theta) peaks for H || c were observed regardless of temperatures and magnetic fields. In contrast, Jc(theta) showed a broad maximum at theta=90 degree, which arises from intrinsic pinning. All data except at theta=90 degree can be scaled by the Blatter plot. Hc2(theta) near Tc follows the anisotropic Ginzburg-Landau expression. The mass anisotropy increased from 1.5 to 2 with increasing temperature, which is an evidence for multi-band superconductivity.
We report on the superior vortex pinning of single and multilayer Ba(Fe1-xCox)2As2 thin films with self-assembled c-axis and artificially introduced ab-plane pins. Ba(Fe1-xCox)2As2 can accept a very high density of pins (15-20 vol%) without Tc suppression. The matching field is greater than 12 T, producing a significant enhancement of the critical current density Jc, an almost isotropic Jc (Theta,20T) > 10^5 A/cm2, and global pinning force density Fp of about 50 GN/m^3. This scenario strongly differs from the high temperature cuprates where the addition of pins without Tc suppression is limited to 2-4 vol%, leading to small HIrr enhancements and improved Jc only below 3-5 Tesla.
We report the temperature dependence of the resistivity and thermoelectric power under hydrostatic pressure of the itinerant antiferromagnet BaFe2As2 and the electron-doped superconductor Ba(Fe0.9Co0.1)2As2. We observe a hole-like contribution to the thermopower below the structural-magnetic transition in the parent compound that is suppressed in magnitude and temperature with pressure. Pressure increases the contribution of electrons to transport in both the doped and undoped compound. In the 10% Co-doped sample, we used a two-band model for thermopower to estimate the carrier concentrations and determine the effect of pressure on the band structure.
We report muon spin rotation ($mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $lambda$ we find that for optimally- and over-doped samples, $1/lambda(Tto 0)^2$ varies monotonically with the superconducting transition temperature T$_{rm C}$. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied.
The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diffusive spin dynamics. At low energies, the spectrum around the magnetic ordering vector Q_AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q_AFM. We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.