An all-optical scheme for simulating non-Markovian evolution of a quantum system is proposed. It uses only linear optics elements and by controlling the system parameters allows one to control the presence or absence of information backflow from the environment. A sufficient and necessary condition for the non-Markovianity of our channel based on Gaussian inputs is proved. Various criteria for detecting non-Markovianity are also investigated by checking the dynamical evolution of the channel.
We provide a general discussion of the Liouvillian spectrum for a system coupled to a non-Markovian bath using Floquet theory. This approach is suitable when the system is described by a time-convolutionless master equation with time-periodic rates. Surprisingly, the periodic nature of rates allow us to have a stroboscopic divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the general theory for a Schrodinger cat which is roaming inside a non-Markovian bath, and demonstrate the appearance of stroboscopic revival of the cat at later time after its death. Our theory may have profound implications in entropy production in non-equilibrium systems.
Dense wavelength division multiplexing (DWDM) is one of the most successful methods for enhancing data transmission rates in both classical and quantum communication networks. Although signal multiplexing and demultiplexing are equally important, traditional multiplexing and demultiplexing methods are based on passive devices such as arrayed waveguides and fiber Bragg cascade filters, which, although widely used in commercial devices, lack any active tuning ability. In this work, we propose a signal demultiplexing method based on sum frequency generation (SFG) with two significant features: first, any signal from the common communication channel can be demultiplexed to a single user by switching the pump wavelength; second, a cheap high-performance detector can be used for signal detection. These two features were demonstrated by demultiplexing multi-channel energy-time entanglement generated by a micro-cavity silicon chip. High interference visibilities over three channels after demultiplexing showed that entanglement was preserved and verified the high performance of the demultiplexer, which will find wide application in high-capacity quantum communication networks.
We review the most recent developments in the theory of open quantum systems focusing on situations in which the reservoir memory effects, due to long-lasting and non-negligible correlations between system and environment, play a crucial role. These systems are often referred to as non-Markovian systems. After a brief summary of different measures of non-Markovianity that have been introduced over the last few years we restrict our analysis to the investigation of information flow between system and environment. Within this framework we introduce an important application of non-Markovianity, namely its use as a quantum probe of complex quantum systems. To illustrate this point we consider quantum probes of ultracold gases, spin chains, and trapped ion crystals and show how properties of these systems can be extracted by means of non-Markovianity measures.
The rapidly developing quantum technologies have put forward a requirement to precisely control and measure temperature of microscopic matters at quantum level. Many quantum thermometry schemes have been proposed. However, precisely measuring low temperature is still extremely challenging because the sensing errors obtained in these schemes tend to divergence with decreasing temperature. Using a continuous-variable system as a thermometer, we propose a non-Markovian quantum thermometry to measure the temperature of a quantum reservoir. A mechanism to make the sensing error $delta T$ scale with the temperature $T$ as $delta Tsimeq T$ in the full-temperature regime is discovered. Our analysis reveals that it is the quantum criticality of the total thermometer-reservoir system that causes this enhanced sensitivity. Solving the long-standing and challenging error-divergence problem, our result gives an efficient way to precisely measure the low temperature of quantum systems.
Characterisation protocols have so far played a central role in the development of noisy intermediate-scale quantum (NISQ) computers capable of impressive quantum feats. This trajectory is expected to continue in building the next generation of devices: ones that can surpass classical computers for particular tasks -- but progress in characterisation must keep up with the complexities of intricate device noise. A missing piece in the zoo of characterisation procedures is tomography which can completely describe non-Markovian dynamics. Here, we formally introduce a generalisation of quantum process tomography, which we call process tensor tomography. We detail the experimental requirements, construct the necessary post-processing algorithms for maximum-likelihood estimation, outline the best-practice aspects for accurate results, and make the procedure efficient for low-memory processes. The characterisation is the pathway to diagnostics and informed control of correlated noise. As an example application of the technique, we improve multi-time circuit fidelities on IBM Quantum devices for both standalone qubits and in the presence of crosstalk to a level comparable with the fault-tolerant noise threshold in a variety of different noise conditions. Our methods could form the core for carefully developed software that may help hardware consistently pass the fault-tolerant noise threshold.