Do you want to publish a course? Click here

Floquet stroboscopic divisibility in non-Markovian dynamics

76   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a general discussion of the Liouvillian spectrum for a system coupled to a non-Markovian bath using Floquet theory. This approach is suitable when the system is described by a time-convolutionless master equation with time-periodic rates. Surprisingly, the periodic nature of rates allow us to have a stroboscopic divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the general theory for a Schrodinger cat which is roaming inside a non-Markovian bath, and demonstrate the appearance of stroboscopic revival of the cat at later time after its death. Our theory may have profound implications in entropy production in non-equilibrium systems.



rate research

Read More

An all-optical scheme for simulating non-Markovian evolution of a quantum system is proposed. It uses only linear optics elements and by controlling the system parameters allows one to control the presence or absence of information backflow from the environment. A sufficient and necessary condition for the non-Markovianity of our channel based on Gaussian inputs is proved. Various criteria for detecting non-Markovianity are also investigated by checking the dynamical evolution of the channel.
Non-Hermitian topological phases exhibit a number of exotic features that have no Hermitian counterparts, including the skin effect and breakdown of the conventional bulk-boundary correspondence. Here, we implement the non-Hermitian Su-Schrieffer-Heeger (SSH) Hamiltonian, which is a prototypical model for studying non-Hermitian topological phases, with a solid-state quantum simulator consisting of an electron spin and a $^{13}$C nuclear spin in a nitrogen-vacancy (NV) center in a diamond. By employing a dilation method, we realize the desired non-unitary dynamics for the electron spin and map out its spin texture in the momentum space, from which the corresponding topological invariant can be obtained directly. Our result paves the way for further exploiting and understanding the intriguing properties of non-Hermitian topological phases with solid-state spins or other quantum simulation platforms.
We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.
We develop a systematic and efficient approach for numerically solving the non-Markovian quantum state diffusion equations for open quantum systems coupled to an environment up to arbitrary orders of noises or coupling strengths. As an important application, we consider a real-time simulation of a spin-boson model in a strong coupling regime that is difficult to deal with using conventional methods. We show that the non-Markovian stochastic Schr{o}dinger equation can be efficiently implemented as a real--time simulation for this model, so as to give an accurate description of spin-boson dynamics beyond the rotating-wave approximation.
Floquet engineering, modulating quantum systems in a time periodic way, lies at the central part for realizing novel topological dynamical states. Thanks to the Floquet engineering, various new realms on experimentally simulating topological materials have emerged. Conventional Floquet engineering, however, only applies to time periodic non-dissipative Hermitian systems, and for the quantum systems in reality, non-Hermitian process with dissipation usually occurs. So far, it remains unclear how to characterize topological phases of periodically driven non-Hermitian systems via the frequency space Floquet Hamiltonian. Here, we propose the non-Floquet theory to identify different Floquet topological phases of time periodic non-Hermitian systems via the generation of Floquet band gaps in frequency space. In non-Floquet theory, the eigenstates of non-Hermitian Floquet Hamiltonian are temporally deformed to be of Wannier-Stark localization. Remarkably, we show that different choices of starting points of driving period can result to different localization behavior, which effect can reversely be utilized to design detectors of quantum phases in dissipative oscillating fields. Our protocols establish a fundamental rule for describing topological features in non-Hermitian dynamical systems and can find its applications to construct new types of Floquet topological materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا