No Arabic abstract
To avoid reflectivity losses in ITER optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on large mirrors (up to a size of 200*300 mm) and under the influence of strong magnetic fields (several Tesla). This work presents the results of plasma cleaning of aluminium and aluminium oxide (used as beryllium proxy) deposited on molybdenum mirrors. Using radio frequency (13.56 MHz) argon plasma, the removal of a 260 nm mixed aluminium/aluminium oxide film deposited by magnetron sputtering on a mirror (98 mm diameter) was demonstrated. 50 nm of pure aluminium oxide were removed from test mirrors (25 mm diameter) in a magnetic field of 0.35 T for various angles between the field lines and the mirrors surfaces. The cleaning efficiency was evaluated by performing reflectivity measurements, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy.
A laser ablation system has been constructed and used to determine the damage threshold of stainless steel, rhodium and single-, poly- and nanocrystalline molybdenum in vacuum, at a number of wavelengths between 220 and 1064 nm using 5 ns pulses. All materials show an increase of the damage threshold with decreasing wavelength below 400 nm. Tests in a nitrogen atmosphere showed a decrease of the damage threshold by a factor of two to three. Cleaning tests have been performed in vacuum on stainless steel samples after applying mixed Al/W/C/D coatings using magnetron sputtering. In situ XPS analysis during the cleaning process as well ex situ reflectivity measurements demonstrate near complete removal of the coating and a substantial recovery of the reflectivity. The first results also show that the reflectivity obtained through cleaning at 532 nm may be further increased by additional exposure to UV light, in this case 230 nm, an effect which is attributed to the removal of tungsten dust from the surface.
An ultra thin silicon detector called U3DTHIN has been designed and built for neutral particle analyzers (NPA) and thermal neutron detection. The main purpose of this detector is to provide a state-of-the-art solution for detector system of NPAs for the ITER experimental reactor and to be used in combination with a Boron conversion layer for the detection of thermal neutrons. Currently the NPAs are using very thin scintillator - photomultiplier tube, and their main drawbacks are poor energy resolution, intrinsic scintillation nonlinearity, relative low count rate capability and finally poor signal to background discrimination power for the low energy channels. The proposed U3DTHIN detector is based on very thin sensitive substrate which will provide nearly 100% detection efficiency for ions and at the same time very low sensitivity for the neutron and gamma radiation. To achieve a very fast charge collection of the carriers generated by the ions detection a 3D electrode structure[5] has been introduced in the sensitive volume of the detector. One of the most innovative features of these detectors has been the optimal combination of the thin entrance window and the sensitive substrate thickness, to accommodate very large energy dynamic range of the detected ions. An entrance window with a thickness of tens of nanometers together with a sensitive substrate thickness varying from less than 5 microns, to detect the lowest energetic ions to 20 microns for the height ones has been selected after simulations with GEANT4. To increase the signal to background ratio the detector will operate in spectroscopy regime allowing to perform pulse-height analysis. The technology used to fabricate these 3D ultra thin detectors developed at Centro Nacional de Microelectronica in Barcelona and the first signals from an alpha source (241Am) will presented
An extended study on an advanced method for the cleaning of carbon contaminations on large optical surfaces using a remote inductively coupled low pressure RF plasma source (GV10x downstream asher) is reported in this work. Technical as well as scientific features of this scaled up cleaning process are analyzed, such as the cleaning efficiency for different carbon allotropes (amorphous and diamond-like carbon) as a function of feedstock gas composition, RF power (ranging from 30 to 300W), and source-object distances (415 to 840 mm). The underlying physical phenomena for these functional dependences are discussed.
Since the summer of 2003, a large Micromegas TPC prototype (1000 channels, 50 cm drift, 50 cm diameter) has been operated in a 2T superconducting magnet at Saclay. A description of this apparatus and first results from cosmic ray tests are presented. Additional measurements using simpler detectors with a laser source, an X-ray gun and radio-active sources are discussed. Drift velocity and gain measurements, electron attachment and aging studies for a Micromegas TPC are presented. In particular, using simulations and measurements, it is shown that an $Argon-CF_4$ mixture is optimal for operation at a future Linear Collider.
Reaching light intensities above $10^{25}$ W/cm$^{2}$ and up to the Schwinger limit ($10^{29}$ W/cm$^{2}$) would enable testing decades-old fundamental predictions of Quantum Electrodynamics. A promising yet challenging approach to achieve such extreme fields consists in reflecting a high-power femtosecond laser pulse off a curved relativistic mirror. This enhances the intensity of the reflected beam by simultaneously compressing it in time down to the attosecond range, and focusing it to sub-micron focal spots. Here we show that such curved relativistic mirrors can be produced when an ultra-intense laser pulse ionizes a solid target and creates a dense plasma that specularly reflects the incident light. This is evidenced by measuring for the first time the temporal and spatial effects induced on the reflected beam by this so-called plasma mirror. The all-optical measurement technique demonstrated here will be instrumental for the use of relativistic plasma mirrors with the emerging generation of Petawatt lasers, which constitutes a viable experimental path to the Schwinger limit.