Do you want to publish a course? Click here

First tests of a Micromegas TPC in a magnetic field

72   0   0.0 ( 0 )
 Added by Francoise Marechal
 Publication date 2004
  fields Physics
and research's language is English
 Authors P. Colas




Ask ChatGPT about the research

Since the summer of 2003, a large Micromegas TPC prototype (1000 channels, 50 cm drift, 50 cm diameter) has been operated in a 2T superconducting magnet at Saclay. A description of this apparatus and first results from cosmic ray tests are presented. Additional measurements using simpler detectors with a laser source, an X-ray gun and radio-active sources are discussed. Drift velocity and gain measurements, electron attachment and aging studies for a Micromegas TPC are presented. In particular, using simulations and measurements, it is shown that an $Argon-CF_4$ mixture is optimal for operation at a future Linear Collider.



rate research

Read More

The Time Projection Chamber (TPC) for the International Linear Collider will need to measure about 200 track points with a resolution close to 100 $mu$m. A Micro Pattern Gas Detector (MPGD) readout TPC could achieve the desired resolution with existing techniques using sub-millimeter width pads at the expense of a large increase in the detector cost and complexity. We have recently applied a new MPGD readout concept of charge dispersion to a prototype GEM-TPC and demonstrated the feasibility of achieving good resolution with pads similar in width to the ones used for the proportional wire TPC. The charge dispersion studies were repeated with a Micromegas TPC amplification stage. We present here our first results on the Micromegas-TPC resolution with charge dispersion. The TPC resolution with the Micromegas readout is compared to our earlier GEM results and to the resolution expected from electron statistics and transverse diffusion in a gaseous TPC.
The International Linear Collider (ILC) Time Projection Chamber (TPC) transverse space-point resolution goal is 100 microns for all tracks including stiff 90 degree tracks with the full 2 meter drift. A Micro Pattern Gas Detector (MPGD) readout TPC can achieve the target resolution with existing techniques using 1 mm or narrower pads at the expense of increased detector cost and complexity. The new MPGD readout technique of charge dispersion can achieve good resolution without resorting to narrow pads. This has been demonstrated previously for 2 mm x 6 mm pads with GEMs and Micromegas in cosmic ray tests and in a KEK beam test in a 1 Tesla magnet. We have recently tested a Micromegas-TPC using the charge dispersion readout concept in a high field super-conducting magnet at DESY. The measured Micromegas gain was found to be constant within 0.5% for magnetic fields up to 5 Tesla. With the strong suppression of transverse diffusion at high magnetic fields, we measure a flat 50 micron resolution at 5 Tesla over the full 15 cm drift length of our prototype TPC.
189 - F.J. Iguaz , J.G. Garza , F. Aznar 2015
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we present the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.300 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This article describes the actual setup, the first results of the comissioning in Ar+2%iC$_4$H$_{10}$ at 1.2 bar and the future updates for a possible physics run at the Canfranc Underground Laboratory in 2016. A first background model is also presented, based on Geant4 simulations and a muon/electron discrimination method. In a conservative scenario, TREX-DM could be sensitive to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for improvement with a neutron/electron discrimination method or the use of other light gases.
121 - F.J. Iguaz , J.G. Garza , F. Aznar 2016
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.3 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This work describes the commissioning of the actual setup situated in a laboratory on surface and the updates needed for a possible physics run at the Canfranc Underground Laboratory (LSC) in 2016. A preliminary background model of TREX-DM is also presented, based on a Geant4 simulation, the simulation of the detectors response and two discrimination methods: a conservative muon/electron and one based on a neutron source. Based on this background model, TREX-DM could be competitive in the search for low-mass WIMPs. In particular it could be sensitive, e.g., to the low-mass WIMP interpretation of the DAMA/LIBRA and other hints in a conservative scenario.
263 - F.J. Iguaz , J.G. Garza , F. Aznar 2015
If Dark Matter is made of Weakly Interacting Massive Particles (WIMPs) with masses below $sim$20 GeV, the corresponding nuclear recoils in mainstream WIMP experiments are of energies too close, or below, the experimental threshold. Gas Time Projection Chambers (TPCs) can be operated with a variety of target elements, offer good tracking capabilities and, on account of the amplification in gas, very low thresholds are achievable. Recent advances in electronics and in novel radiopure TPC readouts, especially micro-mesh gas structure (Micromegas), are improving the scalability and low-background prospects of gaseous TPCs. Here we present TREX-DM, a prototype to test the concept of a Micromegas-based TPC to search for low-mass WIMPs. The detector is designed to host an active mass of $sim$0.300 kg of Ar at 10 bar, or alternatively $sim$0.160 kg of Ne at 10 bar, with an energy threshold below 0.4 keVee, and is fully built with radiopure materials. We will describe the detector in detail, the results from the commissioning phase on surface, as well as a preliminary background model. The anticipated sensitivity of this technique may go beyond current experimental limits for WIMPs of masses of 2-8 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا