Do you want to publish a course? Click here

Criteria for 2D kinematics in an interacting Fermi gas

460   0   0.0 ( 0 )
 Added by Chris Vale
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultracold Fermi gases subject to tight transverse confinement offer a highly controllable setting to study the two-dimensional (2D) BCS to Berezinskii-Kosterlitz-Thouless superfluid crossover. Achieving the 2D regime requires confining particles to their transverse ground state which presents challenges in interacting systems. Here, we establish the conditions for an interacting Fermi gas to behave kinematically 2D. Transverse excitations are detected by measuring the transverse expansion rate which displays a sudden increase when the atom number exceeds a critical value $N_{2D}$ signifying a density driven departure from 2D kinematics. For weak interactions $N_{2D}$ is set by the aspect ratio of the trap. Close to a Feshbach resonance, however, the stronger interactions reduce $N_{2D}$ and excitations appear at lower density.



rate research

Read More

We have studied the transition from two to three dimensions in a low temperature weakly interacting $^6$Li Fermi gas. Below a critical atom number, $N_{2D}$, only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two-dimensional. Above $N_{2D}$ the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.
81 - K. Fenech , P. Dyke , T. Peppler 2015
Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behaviour.
We investigate a polaronic excitation in a one-dimensional spin-1/2 Fermi gas with contact attractive interactions, using the complex Langevin method, which is a promising approach to evade a possible sign problem in quantum Monte Carlo simulations. We found that the complex Langevin method works correctly in a wide range of temperature, interaction strength, and population imbalance. The Fermi polaron energy extracted from the two-point imaginary Greens function is not sensitive to the temperature and the impurity concentration in the parameter region we considered. Our results show a good agreement with the solution of the thermodynamic Bethe ansatz at zero temperature.
Transport of strongly interacting fermions governs modern materials -- from the high-$T_c$ cuprates to bilayer graphene --, but also nuclear fission, the merging of neutron stars and the expansion of the early universe. Here we observe a universal quantum limit of diffusivity in a homogeneous, strongly interacting Fermi gas of atoms by studying sound propagation and its attenuation via the coupled transport of momentum and heat. In the normal state, the sound diffusivity ${D}$ monotonically decreases upon lowering the temperature $T$, in contrast to the diverging behavior of weakly interacting Fermi liquids. As the superfluid transition temperature is crossed, ${D}$ attains a universal value set by the ratio of Plancks constant ${h}$ and the particle mass ${m}$. This finding of quantum limited sound diffusivity informs theories of fermion transport, with relevance for hydrodynamic flow of electrons, neutrons and quarks.
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related spin-heat transport coefficients as functions of temperature and interaction strength. We find that when the inter-spin scattering length becomes larger than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a function of temperature, and hence so does the direction of the spin-separation. We compute this zero-crossing temperature as a function of interaction strength and in particular in the unitary limit for the inter-spin scattering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا