Do you want to publish a course? Click here

Universal Sound Diffusion in a Strongly Interacting Fermi Gas

141   0   0.0 ( 0 )
 Added by Parth Patel
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transport of strongly interacting fermions governs modern materials -- from the high-$T_c$ cuprates to bilayer graphene --, but also nuclear fission, the merging of neutron stars and the expansion of the early universe. Here we observe a universal quantum limit of diffusivity in a homogeneous, strongly interacting Fermi gas of atoms by studying sound propagation and its attenuation via the coupled transport of momentum and heat. In the normal state, the sound diffusivity ${D}$ monotonically decreases upon lowering the temperature $T$, in contrast to the diverging behavior of weakly interacting Fermi liquids. As the superfluid transition temperature is crossed, ${D}$ attains a universal value set by the ratio of Plancks constant ${h}$ and the particle mass ${m}$. This finding of quantum limited sound diffusivity informs theories of fermion transport, with relevance for hydrodynamic flow of electrons, neutrons and quarks.



rate research

Read More

Many-body fermion systems are important in many branches of physics, including condensed matter, nuclear, and now cold atom physics. In many cases, the interactions between fermions can be approximated by a contact interaction. A recent theoretical advance in the study of these systems is the derivation of a number of exact universal relations that are predicted to be valid for all interaction strengths, temperatures, and spin compositions. These equations, referred to as the Tan relations, relate a microscopic quantity, namely, the amplitude of the high-momentum tail of the fermion momentum distribution, to the thermodynamics of the many-body system. In this work, we provide experimental verification of the Tan relations in a strongly interacting gas of fermionic atoms. Specifically, we measure the fermion momentum distribution using two different techniques, as well as the rf excitation spectrum and determine the effect of interactions on these microscopic probes. We then measure the potential energy and release energy of the trapped gas and test the predicted universal relations.
224 - Peng He , Yuzhu Jiang , Xiwen Guan 2014
Quantum criticality of strongly attractive Fermi gas with $SU(3)$ symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations.The phase transitions driven by the chemical potential $mu$, effective magnetic field $H_1$, $H_2$ (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the thermodynamic Bethe ansatz equations in zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent $z=2$ and correlation length exponent $ u=1/2$ read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multi-component Fermi gases with $SU(N)$ symmetry.
242 - E. D. Kuhnle , H. Hu , X.-J. Liu 2010
We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tans relations. This is achieved through measurements of the static structure factor which displays a universal scaling proportional to the ratio of Tans contact to the momentum $C/q$. Bragg spectroscopy of ultracold $^6$Li atoms from a periodic optical potential is used to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We calibrate our Bragg spectra using the $f$-sum rule, which is found to improve the accuracy of the structure factor measurement.
We study the anisotropic, elliptic expansion of a thermal atomic Bose gas released from an anisotropic trapping potential, for a wide range of interaction strengths across a Feshbach resonance. We show that in our system this hydrodynamic phenomenon is for all interaction strengths fully described by a microscopic kinetic model with no free parameters. The success of this description crucially relies on taking into account the reduced thermalising power of elastic collisions in a strongly interacting gas, for which we derive an analytical theory. We also perform time-resolved measurements that directly reveal the dynamics of the energy transfer between the different expansion axes.
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related spin-heat transport coefficients as functions of temperature and interaction strength. We find that when the inter-spin scattering length becomes larger than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a function of temperature, and hence so does the direction of the spin-separation. We compute this zero-crossing temperature as a function of interaction strength and in particular in the unitary limit for the inter-spin scattering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا