No Arabic abstract
We study the time-dependent Ginzburg--Landau equations in a three-dimensional curved polyhedron (possibly nonconvex). Compared with the previous works, we prove existence and uniqueness of a global weak solution based on weaker regularity of the solution in the presence of edges or corners, where the magnetic potential may not be in $L^2(0,T;H^1(Omega)^3)$.
We show the global-in-time well-posedness of the complex Ginzburg-Landau (CGL) equation with a space-time white noise on the 3-dimensional torus. Our method is based on [14], where Mourrat and Weber showed the global well-posedness for the dynamical $Phi_3^4$ model. We prove a priori $L^{2p}$ estimate for the paracontrolled solution as in the deterministic case [5].
The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. These integrations play an important role to setting the subsequent fixed point argument. The existence of solutions for less regular data is discussed, and several examples and applications are presented.
We study the Cauchy problem for the half Ginzburg-Landau-Kuramoto (hGLK) equation with the second order elliptic operator having rough coefficients and potential type perturbation. The blow-up of solutions for hGLK equation with non-positive nonlinearity is shown by an ODE argument. The key tools in the proof are appropriate commutator estimates and the essential self-adjointness of the symmetric uniformly elliptic operator with rough metric and potential type perturbation.
We present numerical studies of the dynamics of vortices in the Ginzburg Landau model using equations derived from the gradient flow of the free energy. These equations have previously been proposed to describe the dynamics of n-vortices away from equilibrium. We are able to model the dynamics of multiple n-vortex configurations starting far from equilibrium. We find generically that there are two time scales for equilibration: a short time scale related to the formation time for a single n-vortex, and a longer time scale that characterizes vortex-vortex interactions.
We prove global well-posedness for the microscopic FENE model under a sharp boundary requirement. The well-posedness of the FENE model that consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation has been studied intensively, mostly with the zero flux boundary condition. Recently it was illustrated by C. Liu and H. Liu [2008, SIAM J. Appl. Math., 68(5):1304--1315] that any preassigned boundary value of a weighted distribution will become redundant once the non-dimensional parameter $b>2$. In this article, we show that for the well-posedness of the microscopic FENE model ($b>2$) the least boundary requirement is that the distribution near boundary needs to approach zero faster than the distance function. Under this condition, it is shown that there exists a unique weak solution in a weighted Sobolev space. Moreover, such a condition still ensures that the distribution is a probability density. The sharpness of this boundary requirement is shown by a construction of infinitely many solutions when the distribution approaches zero as fast as the distance function.