Do you want to publish a course? Click here

Local Well-posedness and Blow-up for the Half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential

70   0   0.0 ( 0 )
 Added by Kazumasa Fujiwara
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the Cauchy problem for the half Ginzburg-Landau-Kuramoto (hGLK) equation with the second order elliptic operator having rough coefficients and potential type perturbation. The blow-up of solutions for hGLK equation with non-positive nonlinearity is shown by an ODE argument. The key tools in the proof are appropriate commutator estimates and the essential self-adjointness of the symmetric uniformly elliptic operator with rough metric and potential type perturbation.



rate research

Read More

The blow-up of solutions for the Cauchy problem of fractional Ginzburg-Landau equation with non-positive nonlinearity is shown by an ODE argument. Moreover, in one dimensional case, the optimal lifespan estimate for size of initial data is obtained.
In this paper, we address the local well-posedness of the spatially inhomogeneous non-cutoff Boltzmann equation when the initial data decays polynomially in the velocity variable. We consider the case of very soft potentials $gamma + 2s < 0$. Our main result completes the picture for local well-posedness in this decay class by removing the restriction $gamma + 2s > -3/2$ of previous works. Our approach is entirely based on the Carleman decomposition of the collision operator into a lower order term and an integro-differential operator similar to the fractional Laplacian. Interestingly, this yields a very short proof of local well-posedness when $gamma in (-3,0]$ and $s in (0,1/2)$ in a weighted $C^1$ space that we include as well.
We study local-time well-posedness and breakdown for solutions of regularized Saint-Venant equations (regularized classical shallow water equations) recently introduced by Clamond and Dutykh. The system is linearly non-dispersive, and smooth solutions conserve an $H^1$-equivalent energy. No shock discontinuities can occur, but the system is known to admit weakly singular shock-profile solutions that dissipate energy. We identify a class of small-energy smooth solutions that develop singularities in the first derivatives in finite time.
We establish the well-posedness and some quantitative stability of the spatially homogeneous Landau equation for hard potentials, using some specific Monge-Kantorovich cost, assuming only that the initial condition is a probability measure with a finite moment of order $p$ for some $p>2$. As a consequence, we extend previous regularity results and show that all non-degenerate measure-valued solutions to the Landau equation, with a finite initial energy, immediately admit analytic densities with finite entropy. Along the way, we prove that the Landau equation instantaneously creates Gaussian moments. We also show existence of weak solutions under the only assumption of finite initial energy.
199 - Yuzhao Wang 2009
In this paper we consider the hyperbolic-elliptic Ishimori initial-value problem. We prove that such system is locally well-posed for small data in $H^{s}$ level space, for $s> 3/2$. The new ingredient is that we develop the methods of Ionescu and Kenig cite{IK} and cite{IK2} to approach the problem in a perturbative way.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا