Do you want to publish a course? Click here

Off-shell invariant super Yang-Mills with gauged central charges for N=D=2 and N=D=4: Do we need a constraint ?

100   0   0.0 ( 0 )
 Added by Noboru Kawamoto
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We investigate to derive off-shell invariant twisted super Yang-Mills for N=2 in 2-dimensions and N=4 in 4-dimensions with a central charge by super connection ansatz formalism. We find off-shell invariant N=2 algebra with and without an extra constraint in 2-dimensions. On the other hand in 4-dimensions we find off-shell invariant N=4 twisted SUSY algebra including one central charge always with a constraint.



rate research

Read More

We formulate N=2 twisted super Yang-Mills theory with a gauged central charge by superconnection formalism in two dimensions. We obtain off-shell invariant supermultiplets and actions with and without constraints, which is in contrast with the off-shell invariant D=N=4 super Yang-Mills formulation with unavoidable constraints.
83 - P. Di Vecchia 2004
We use fractional and wrapped branes to describe perturbative and non-perturbative properties of N=1 super Yang-Mills living on their world-volume. (Talk given at the 1st Nordstrom Symposium, Helsinki, August 2003.)
We formulate a unimodular N=1, d=4 supergravity theory off shell. We see that the infinitesimal Grassmann parameters defining the unimodular supergravity transformations are constrained and show that the conmutator of two infinitesinal unimodular supergravity transformations closes on transverse diffeomorphisms, Lorentz transformations and unimodular supergravity transformations. Along the way, we also show that the linearized theory is a supersymmetric theory of gravitons and gravitinos. We see that de Sitter and anti-de Sitter spacetimes are non-supersymmetric vacua of our unimodular supergravity theory.
63 - C. Angelantonj , S. Ferrara , 2003
We consider classes of T_6 orientifolds, where the orientifold projection contains an inversion I_{9-p} on 9-p coordinates, transverse to a Dp-brane. In absence of fluxes, the massless sector of these models corresponds to diverse forms of N=4 supergravity, with six bulk vector multiplets coupled to N=4 Yang--Mills theory on the branes. They all differ in the choice of the duality symmetry corresponding to different embeddings of SU(1,1)times SO(6,6+n) in Sp(24+2n,R), the latter being the full group of duality rotations. Hence, these Lagrangians are not related by local field redefinitions. When fluxes are turned on one can construct new gaugings of N=4 supergravity, where the twelve bulk vectors gauge some nilpotent algebra which, in turn, depends on the choice of fluxes.
194 - Johannes M. Henn 2020
Tremendous ongoing theory efforts are dedicated to developing new methods for QCD calculations. Qualitative rather than incremental advances are needed to fully exploit data still to be collected at the LHC. The maximally supersymmetric Yang-Mills theory (${mathcal N}=4$ sYM) shares with QCD the gluon sector, which contains the most complicated Feynman graphs, but at the same time has many special properties, and is believed to be solvable exactly. It is natural to ask what we can learn from advances in ${mathcal N}=4$ sYM for addressing difficult problems in QCD. With this in mind, we review here several remarkable developments and highlights of recent results in ${mathcal N}=4$ sYM. This includes all-order results for certain scattering amplitudes, novel symmetries, surprising geometrical structures of loop integrands, novel tools for the calculation of Feynman integrals, and bootstrap methods. While several insights and tools have already been carried over to QCD and have contributed to state-of-the-art calculations for LHC physics, we argue that there is a host of further fascinating ideas waiting to be explored.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا