We give an elementary probabilistic proof of Veraverbekes Theorem for the asymptotic distribution of the maximum of a random walk with negative drift and heavy-tailed increments. The proof gives insight into the principle that the maximum is in general attained through a single large jump.
The von Weizs{a}cker theorem states that every sequence of nonnegative random variables has a subsequence which is Ces`{a}ro convergent to a nonnegative random variable which might be infinite. The goal of this note is to provide a description of the set where the limit is finite. For this purpose, we use a decomposition result due to Brannath and Schachermayer.
We generalize Bangerts non-hyperbolicity result for uniformly tamed almost complex structures on standard symplectic $R^{2n}$ to asymtotically standard symplectic manifolds.
We prove a Gannon-Lee theorem for non-globally hyperbolic Lo-rentzian metrics of regularity $C^1$, the most general regularity class currently available in the context of the classical singularity theorems. Along the way we also prove that any maximizing causal curve in a $C^1$-spacetime is a geodesic and hence of $C^2$-regularity.
Let $mathbb{G}=left(mathbb{V},mathbb{E}right)$ be the graph obtained by taking the cartesian product of an infinite and connected graph $G=(V,E)$ and the set of integers $mathbb{Z}$. We choose a collection $mathcal{C}$ of finite connected subgraphs of $G$ and consider a model of Bernoulli bond percolation on $mathbb{G}$ which assigns probability $q$ of being open to each edge whose projection onto $G$ lies in some subgraph of $mathcal{C}$ and probability $p$ to every other edge. We show that the critical percolation threshold $p_{c}left(qright)$ is a continuous function in $left(0,1right)$, provided that the graphs in $mathcal{C}$ are well-spaced in $G$ and their vertex sets have uniformly bounded cardinality. This generalizes a recent result due to Szabo and Valesin.
We present a short, self-contained, and purely combinatorial proof of Linniks theorem: for any $varepsilon > 0$ there exists a constant $C_varepsilon$ such that for any $N$, there are at most $C_varepsilon$ primes $p leqslant N$ such that the least positive quadratic non-residue modulo $p$ exceeds $N^varepsilon$.