Do you want to publish a course? Click here

Consensus Message Passing for Layered Graphical Models

260   0   0.0 ( 0 )
 Added by Varun Jampani
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging process tend to be large, loopy and layered. For this reason bottom-up conditional models have traditionally dominated in such domains. We find that widely-used, general-purpose message passing inference algorithms such as Expectation Propagation (EP) and Variational Message Passing (VMP) fail on the simplest of vision models. With these models in mind, we introduce a modification to message passing that learns to exploit their layered structure by passing consensus messages that guide inference towards good solutions. Experiments on a variety of problems show that the proposed technique leads to significantly more accurate inference results, not only when compared to standard EP and VMP, but also when compared to competitive bottom-up conditional models.



rate research

Read More

Graph neural networks (GNNs) are a powerful inductive bias for modelling algorithmic reasoning procedures and data structures. Their prowess was mainly demonstrated on tasks featuring Markovian dynamics, where querying any associated data structure depends only on its latest state. For many tasks of interest, however, it may be highly beneficial to support efficient data structure queries dependent on previous states. This requires tracking the data structures evolution through time, placing significant pressure on the GNNs latent representations. We introduce Persistent Message Passing (PMP), a mechanism which endows GNNs with capability of querying past state by explicitly persisting it: rather than overwriting node representations, it creates new nodes whenever required. PMP generalises out-of-distribution to more than 2x larger test inputs on dynamic temporal range queries, significantly outperforming GNNs which overwrite states.
We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its performance have been obtained in the high-dimensional regime. Recently, an Approximate Message Passing (AMP) algorithm has been proposed as an alternative estimator with the potential to improve the accuracy of PCA. However, the existing analysis of AMP requires an initialization that is both correlated with the signal and independent of the noise, which is often unrealistic in practice. In this work, we combine the two methods, and propose to initialize AMP with PCA. Our main result is a rigorous asymptotic characterization of the performance of this estimator. Both the AMP algorithm and its analysis differ from those previously derived in the Gaussian setting: at every iteration, our AMP algorithm requires a specific term to account for PCA initialization, while in the Gaussian case, PCA initialization affects only the first iteration of AMP. The proof is based on a two-phase artificial AMP that first approximates the PCA estimator and then mimics the true AMP. Our numerical simulations show an excellent agreement between AMP results and theoretical predictions, and suggest an interesting open direction on achieving Bayes-optimal performance.
We consider the problem of estimating a signal from measurements obtained via a generalized linear model. We focus on estimators based on approximate message passing (AMP), a family of iterative algorithms with many appealing features: the performance of AMP in the high-dimensional limit can be succinctly characterized under suitable model assumptions; AMP can also be tailored to the empirical distribution of the signal entries, and for a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time algorithms. However, a major issue of AMP is that in many models (such as phase retrieval), it requires an initialization correlated with the ground-truth signal and independent from the measurement matrix. Assuming that such an initialization is available is typically not realistic. In this paper, we solve this problem by proposing an AMP algorithm initialized with a spectral estimator. With such an initialization, the standard AMP analysis fails since the spectral estimator depends in a complicated way on the design matrix. Our main contribution is a rigorous characterization of the performance of AMP with spectral initialization in the high-dimensional limit. The key technical idea is to define and analyze a two-phase artificial AMP algorithm that first produces the spectral estimator, and then closely approximates the iterates of the true AMP. We also provide numerical results that demonstrate the validity of the proposed approach.
Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. However, AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable for other matrix ensembles, especially for ill-conditioned ones. To handle this difficulty, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP requires high-complexity linear minimum mean square error estimator. To solve the disadvantages of AMP and OAMP/VAMP, this paper proposes a memory AMP (MAMP), in which a long-memory matched filter is proposed for interference suppression. The complexity of MAMP is comparable to AMP. The asymptotic Gaussianity of estimation errors in MAMP is guaranteed by the orthogonality principle. A state evolution is derived to asymptotically characterize the performance of MAMP. Based on the state evolution, the relaxation parameters and damping vector in MAMP are optimized. For all right-unitarily-invariant matrices, the optimized MAMP converges to OAMP/VAMP, and thus is Bayes-optimal if it has a unique fixed point. Finally, simulations are provided to verify the validity and accuracy of the theoretical results.
167 - Botond Cseke , Tom Heskes 2014
We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be bounded from below. It turns out that the condition is identical to the pairwise normalizability condition, which is known to be a sufficient condition for the convergence of the message passing algorithm. We show that stable fixed points of the Gaussian message passing algorithm are local minima of the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating that the unboundedness of the free energy implies the divergence of the message passing algorithm.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا