Do you want to publish a course? Click here

Nanoscale Electrostatic Control of Oxide Interfaces

114   0   0.0 ( 0 )
 Added by Srijit Goswami
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a robust and versatile platform to define nanostructures at oxide interfaces via patterned top gates. Using LaAlO$_3$/SrTiO$_3$ as a model system, we demonstrate controllable electrostatic confinement of electrons to nanoscale regions in the conducting interface. The excellent gate response, ultra-low leakage currents, and long term stability of these gates allow us to perform a variety of studies in different device geometries from room temperature down to 50 mK. Using a split-gate device we demonstrate the formation of a narrow conducting channel whose width can be controllably reduced via the application of appropriate gate voltages. We also show that a single narrow gate can be used to induce locally a superconducting to insulating transition. Furthermore, in the superconducting regime we see indications of a gate-voltage controlled Josephson effect.



rate research

Read More

Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that do not occur in the parent bulk compounds. The most prominent example is the appearance of highly conducting and superconducting states at the interface between the band insulators LaAlO3 and SrTiO3. Here we report a new emergent phenomenon at the LaMnO3/SrTiO3 interface in which an antiferromagnetic insulator abruptly transforms into a magnetic state that exhibits unexpected nanoscale superparamagnetic dynamics. Upon increasing the thickness of LaMnO3 above five unit cells, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic islands of 10 to 50 nm diameter, which display random moment reversals by thermal activation or in response to an in-plane magnetic field. Our charge reconstruction model of the polar LaMnO3/SrTiO3 heterostructure describes the sharp emergence of thermodynamic phase separation leading to nucleation of metallic ferromagnetic islands in an insulating antiferromagnetic matrix. The model further suggests that the nearby superparamagnetic-ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics.
Two-dimensional electron gas (2DEG) confined in quantum wells at insulating oxide interfaces have attracted much attention as their electronic properties display a rich physics with various electronics orders such as superconductivity and magnetism. A particularly exciting features of these hetero-structures lies in the possibility to control their electronic properties by electrostatic gating, opening up new opportunities for the development of oxide based electronics. However, unexplained gating hysteresis and time relaxation of the 2DEG resistivity have been reported in some bias range, raising the question of the precise role of the gate voltage. Here we show that in LaTiO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures, above a filling threshold, electrons irreversibly escape out of the well. This mechanism, which is directly responsible for the hysteresis and time relaxation, can be entirely described by a simple analytical model derived in this letter. Our results highlight the crucial role of the gate voltage both on the shape and the filling of the quantum well. They also demonstrate that it is possible to achieve a low-carrier density regime in a semiconductor limit, whereas the high-carrier density regime is intrinsically limited.
The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide interfaces becomes superconducting when the carrier density is tuned by gating. The measured resistance and superfluid density reveal an inhomogeneous superconductivity resulting from percolation of filamentary structures of superconducting puddles with randomly distributed critical temperatures, embedded in a non-superconducting matrix. Following the evidence that superconductivity is related to the appearance of high-mobility carriers, we model intra-puddle superconductivity by a multi-band system within a weak coupling BCS scheme. The microscopic parameters, extracted by fitting the transport data with a percolative model, yield a consistent description of the dependence of the average intra-puddle critical temperature and superfluid density on the carrier density.
Despite the ubiquity of applications of heat transport across nanoscale interfaces, including integrated circuits, thermoelectrics, and nanotheranostics, an accurate description of phonon transport in these systems remains elusive. Here we present a theoretical and computational framework to describe phonon transport with position, momentum and scattering event resolution. We apply this framework to a single material spherical nanoparticle for which the multidimensional resolution offers insight into the physical origin of phonon thermalization, and length-scale dependent anisotropy of steady-state phonon distributions. We extend the formalism to handle interfaces explicitly and investigate the specific case of semi-coherent materials interfaces by computing the coupling between phonons and interfacial strain resulting from aperiodic array of misfit dislocations. Our framework quantitatively describes the thermal interface resistance within the technologically relevant Si-Ge heterostructures. In future, this formalism could provide new insight into coherent and driven phonon effects in nanoscale materials increasingly accessible via ultrafast, THz and near-field spectroscopies.
248 - Emil Varga , John P. Davis 2021
Superfluid $^4$He is a promising material for optomechanical and electromechanical applications due to its low acoustic loss. Some of the more intriguing aspects of superfluidity -- the macroscopic coherence, topological nature of vorticity, and capability of supporting non-classical flows -- remain, however, poorly explored resources in opto- and electro-mechanical systems. Here, we present an electromechanical coupling to pure superflow inside a nanofluidic Helmholtz resonator with viscously clamped normal fluid. The system is capable of simultaneous measurement of displacement and velocity of the Helmholtz mechanical mode weakly driven by incoherent environmental noise. Additionally, we implement feedback capable of inducing self-oscillation of the non-classical acoustic mode, damping the motion below the ambient level, and tuning of the mode frequency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا