No Arabic abstract
We study the very early lightcurve of supernova 2014J (SN 2014J) using the high-cadence broad-band imaging data obtained by the Kilodegree Extremely Little Telescope (KELT), which fortuitously observed M 82 around the time of the explosion, starting more than two months prior to detection, with up to 20 observations per night. These observations are complemented by observations in two narrow-band filters used in an H$alpha$ survey of nearby galaxies by the intermediate Palomar Transient Factory (iPTF) that also captured the first days of the brightening of the sn. The evolution of the lightcurves is consistent with the expected signal from the cooling of shock heated material of large scale dimensions, $gsim 1 R_{odot}$. This could be due to heated material of the progenitor, a companion star or pre-existing circumstellar environment, e.g., in the form of an accretion disk. Structure seen in the lightcurves during the first days after explosion could also originate from radioactive material in the outer parts of an exploding white dwarf, as suggested from the early detection of gamma-rays. The model degeneracy translates into a systematic uncertainty of $pm 0.3$ days on the estimate of the first light from SN 2014J.
The optical light curve of Type Ia supernovae (SNIa) is powered by thermalized gamma-rays produced by the decay of 56Ni and 56Co, the main radioactive isotopes synthesized by the thermonuclear explosion of a C/O white dwarf. Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the characteristics of the explosion. In particular, it is expected that the analysis of the early gamma emission, near the maximum of the optical light curve, could provide information about the distribution of the radioactive elements in the debris. In this paper, the gamma data obtained from SN2014J in M82 by the instruments on board of INTEGRAL are analyzed taking special care of the impact that the detailed spectral response has on the measurements of the intensity of the lines. The 158 keV emission of 56Ni has been detected in SN2014J at ~5 sigma at low energy with both ISGRI and SPI around the maximum of the optical light curve. After correcting the spectral response of the detector, the fluxes in the lines suggest that, in addition to the bulk of radioactive elements buried in the central layers of the debris, there is a plume of 56Ni, with a significance of ~3 sigma, moving at high velocity and receding from the observer. The mass of the plume is in the range of ~ 0.03-0.08 solar masses. No SNIa explosion model had predicted the mass and geometrical distribution of 56Ni suggested here. According to its optical properties, SN2014J looks as a normal SNIa. So it is extremely important to discern if it is also representative in the gamma-ray band.
We calculate the limits on the fraction of viable dark matter minihalos in the early universe to host Population III.1 stars, surviving today as dark matter spikes in our Milky Way halo. Motivated by potential hints of light dark matter from the DAMA and CoGeNT direct dark matter searches, we consider thermal relic WIMP dark matter with masses of 5, 10, and 20 GeV, and annihilation to mu^+ mu^-, tau^+ tau^-, and q bar{q}. From this brief study we conclude that, if dark matter is light, either the typical black hole size is lesssim 100 M_odot (i.e. there is no significant Dark Star phase), and/or dark matter annihilates primarily to mu^+ mu^- or other final states that result in low gamma-ray luminosity, and/or that an extremely small fraction of minihalos in the early universe that seem suitable to host the formation of the first stars actually did.
The hard X-ray detector (HXD) onboard {it Suzaku} measured soft $gamma$-rays from the Type Ia supernova SN2014J at $77pm2$ days after the explosion. Although the confidence level of the signal is about 90% (i.e., $2 sigma$), the $3 sigma$ upper limit has been derived at $< 2.2 times10^{-4}$ ph s$^{-1}$ cm$^{-2}$ in the 170 -- 250 keV band as the first independent measurement of soft $gamma$-rays with an instrument other than {it INTEGRAL}. For this analysis, we have examined the reproducibility of the NXB model of HXD/GSO using blank sky data. We find that the residual count rate in the 90 -- 500 keV band is distributed around an average of 0.19% with a standard deviation of 0.42% relative to the NXB rate. The averaged residual signals are consistent with that expected from the cosmic X-ray background. The flux of SN2014J derived from {it Suzaku} measurements taken in one snapshot at $t=77pm2$ days after the explosion is consistent with the {it INTEGRAL} values averaged over the period between $t=$50 and 100 days and also with explosion models of single or double degenerate scenarios. Being sensitive to the total ejecta mass surrounding the radioactive material, the ratio between continuum and line flux in the soft gamma-ray regime might distinguish different progenitor models. The {it Suzaku} data have been examined with this relation at $t=77pm2$ days, but could not distinguish models between single and double degenerate-progenitors. We disfavor explosion models with larger $^{56}$Ni masses than 1 $M_odot$, from our $1 sigma$ error on the 170-250 keV X-ray flux of $(1.2pm0.7) times10^{-4}$ ph s$^{-1}$ cm$^{-2}$.
SN 2016gkg is a nearby Type IIb supernova discovered shortly after explosion. Like several other Type IIb events with early-time data, SN 2016gkg displays a double-peaked light curve, with the first peak associated with the cooling of a low-mass extended progenitor envelope. We present unprecedented intranight-cadence multi-band photometric coverage of the first light-curve peak of SN 2016gkg obtained from the Las Cumbres Observatory Global Telescope network, the Asteroid Terrestrial-impact Last Alert System, the Swift satellite and various amateur-operated telescopes. Fitting these data to analytical shock-cooling models gives a progenitor radius of ~25-140 solar radii with ~2-30 x 10^-2 solar masses of material in the extended envelope (depending on the model and the assumed host-galaxy extinction). Our radius estimates are broadly consistent with values derived independently (in other works) from HST imaging of the progenitor star. However, the shock-cooling model radii are on the lower end of the values indicated by pre-explosion imaging. Hydrodynamical simulations could refine the progenitor parameters deduced from the shock-cooling emission and test the analytical models.
We study the production of cosmogenic neutrinos and photons during the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs). For a wide range of models in cosmological evolution of source luminosity, composition and maximum energy we calculate the expected flux of cosmogenic secondaries by normalizing our cosmic ray output to experimental spectra and comparing the diffuse flux of GeV-TeV gamma-rays to the experimental one measured by the Fermi satellite. Most of these models yield significant neutrino fluxes for current experiments like IceCube or Pierre Auger. Furthermore, we discuss the possibilities of signing the presence of UHE proton sources either within or outside the cosmic ray horizon using neutrinos or photons observations even if the cosmic ray composition becomes heavier at the highest energies. We discuss the possible constraints that could be brought on the UHECR origin from the different messengers and energy ranges.