Do you want to publish a course? Click here

Constraints on the Progenitor of SN 2016gkg From Its Shock-Cooling Light Curve

139   0   0.0 ( 0 )
 Added by Iair Arcavi Dr.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

SN 2016gkg is a nearby Type IIb supernova discovered shortly after explosion. Like several other Type IIb events with early-time data, SN 2016gkg displays a double-peaked light curve, with the first peak associated with the cooling of a low-mass extended progenitor envelope. We present unprecedented intranight-cadence multi-band photometric coverage of the first light-curve peak of SN 2016gkg obtained from the Las Cumbres Observatory Global Telescope network, the Asteroid Terrestrial-impact Last Alert System, the Swift satellite and various amateur-operated telescopes. Fitting these data to analytical shock-cooling models gives a progenitor radius of ~25-140 solar radii with ~2-30 x 10^-2 solar masses of material in the extended envelope (depending on the model and the assumed host-galaxy extinction). Our radius estimates are broadly consistent with values derived independently (in other works) from HST imaging of the progenitor star. However, the shock-cooling model radii are on the lower end of the values indicated by pre-explosion imaging. Hydrodynamical simulations could refine the progenitor parameters deduced from the shock-cooling emission and test the analytical models.



rate research

Read More

96 - Niharika Sravan 2017
Type IIb supernovae (SNe) present a unique opportunity for understanding the progenitors of stripped-envelope (SE) SNe as the stellar progenitor of several Type IIb SNe have been identified in pre-explosion images. In this paper, we use Bayesian inference and a large grid of non-rotating solar-metallicity single and binary stellar models to derive the associated probability distributions of single and binary progenitors of the Type IIb SN 2016gkg using existing observational constraints. We find that potential binary star progenitors have smaller pre-SN hydrogen-envelope and helium-core masses than potential single-star progenitors typically by 0.1 Msun and 2 Msun, respectively. We find that, a binary companion, if present, is a main-sequence or red-giant star. Apart from this, we do not find strong constraints on the nature of the companion star. We demonstrate that the range of progenitor helium-core mass inferred from observations could help improve constraints on the progenitor. We find that the probability that the progenitor of SN 2016gkg was a binary is 22% when we use constraints only on the progenitor luminosity and effective temperature. Imposing the range of pre-SN progenitor hydrogen-envelope mass and radius inferred from SN light-curves the probability the progenitor is a binary increases to 44%. However, there is no clear preference for a binary progenitor. This is in contrast to binaries being the currently favored formation channel for Type IIb SNe. Our analysis demonstrates the importance of statistical inference methods to constrain progenitor channels.
We report initial observations and analysis on the Type IIb SN~2016gkg in the nearby galaxy NGC~613. SN~2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive photometric follow-up campaign. SN~2016gkg shows strong similarities with other Type IIb SNe, in particular with respect to the he~emission features observed in both the optical and near infrared. SN~2016gkg evolved faster than the prototypical Type~IIb SN~1993J, with a decline similar to that of SN~2011dh after the first peak. The analysis of archival {it Hubble Space Telescope} images indicate a pre-explosion source at SN~2016gkgs position, suggesting a progenitor star with a $sim$mid F spectral type and initial mass $15-20$msun, depending on the distance modulus adopted for NGC~613. Modeling the temperature evolution within $5,rm{days}$ of explosion, we obtain a progenitor radius of $sim,48-124$rsun, smaller than that obtained from the analysis of the pre-explosion images ($240-320$rsun).
A search for the progenitor of SN~2010jl, an unusually luminous core-collapse supernova of Type~IIn, using pre-explosion {it Hubble}/WFPC2 and {it Spitzer}/IRAC images of the region, yielded upper limits on the UV and near-infrared (IR) fluxes from any candidate star. These upper limits constrain the luminosity and effective temperature of the progenitor, the mass of any preexisting dust in its surrounding circumstellar medium (CSM), and dust proximity to the star. A {it lower} limit on the CSM dust mass is required to hide a luminous progenitor from detection by {it Hubble}. {it Upper} limits on the CSM dust mass and constraints on its proximity to the star are set by requiring that the absorbed and reradiated IR emission not exceed the IRAC upper limits. Using the combined extinction-IR emission constraints we present viable $M_d-R_1$ combinations, where $M_d$ and $R_1$ are the CSM dust mass and its inner radius. These depend on the CSM outer radius, dust composition and grain size, and the properties of the progenitor. The results constrain the pre-supernova evolution of the progenitor, and the nature and origin of the observed post-explosion IR emission from SN~2010jl. In particular, an $eta$~Car-type progenitor will require at least 4~mag of visual extinction to avoid detection by the {it Hubble}. This can be achieved with dust masses $gtrsim 10^{-3}$~msun (less than the estimated 0.2-0.5~msun around $eta$~Car) which must be located at distances of $gtrsim 10^{16}$~cm from the star to avoid detection by {it Spitzer}.
105 - Ori D. Fox 2015
SN 2006gy was the most luminous SN ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>10^51 erg) require either atypically large explosion energies (e.g., pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g., shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day ~800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Here we report detections of SN 2006gy using HST and Keck AO at ~3000 days post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system.
284 - Victor Utrobin 2018
With the same method as used previously, we investigate neutrino-driven explosions of a larger sample of blue supergiant models. The larger sample includes three new presupernova stars. The results are compared with light-curve observations of the peculiar type IIP SN 1987A. The explosions were modeled in 3D with the neutrino-hydrodynamics code PROMETHEUS-HOTB, and light-curve calculations were performed in spherical symmetry with the radiation-hydrodynamics code CRAB. Our results confirm the basic findings of the previous work: 3D neutrino-driven explosions with SN 1987A-like energies synthesize an amount of Ni-56 that is consistent with the radioactive tail of the light curve. Moreover, the models mix hydrogen inward to minimum velocities below 400 km/s as required by spectral observations. Hydrodynamic simulations with the new progenitor models, which possess smaller radii than the older ones, show much better agreement between calculated and observed light curves in the initial luminosity peak and during the first 20 days. A set of explosions with similar energies demonstrated that a high growth factor of Rayleigh-Taylor instabilities at the (C+O)/He composition interface combined with a weak interaction of fast Rayleigh-Taylor plumes, where the reverse shock occurs below the He/H interface, provides a sufficient condition for efficient outward mixing of Ni-56 into the hydrogen envelope. This condition is realized to the required extent only in one of the older stellar models, which yielded a maximum velocity of around 3000 km/s for the bulk of ejected Ni-56, but failed to reproduce the helium-core mass of 6 Msun inferred from the absolute luminosity of the presupernova star. We conclude that none of the single-star progenitor models proposed for SN 1987A to date satisfies all constraints set by observations. (Abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا