Do you want to publish a course? Click here

Excitations of photon-number states in Kerr nonlinear resonator at finite temperatures

592   0   0.0 ( 0 )
 Added by Gor Hovsepyan
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate temperature reservoir effects in a lossy Kerr nonlinear resonator considering selective excitation of ooscillatory mode driven by a sequence of Gaussian pulses. In this way, we analyze time-dependent populations of photon-number states and quantum statistics on the base of second-order photon correlation function in one-photon and two-photon transitions. The effects coming from thermal reservoirs are interesting for performing more realistic approach to generate Fock states and for study phenomena connecting quantum engineering and temperature. We also study the role of pulse-shaping effects during selective excitation.



rate research

Read More

We study Kerr nonlinear resonators (KNR) driven by a continuous wave field in quantum regimes where strong Kerr interactions give rise to selective resonant excitations of oscillatory modes. We use an exact quantum theory of KNR in the framework of the Fokker-Planck equation without any quantum state truncation or perturbation procedure. This approach allows non-perturbative consideration of KNR for various quantum operational regimes including cascaded processes between oscillatory states. We focus on understanding of multi-photon non-resonant and selective resonant excitations of introcavity mode depending on the detuning, the amplitude of the driving field and the strength of nonlinearity. The analysis is provided on the base of photon number distributions, the photon-number correlation function and the Wigner function.
Cat states of the microwave field stored in high-Q resonators show great promise for robust encoding and manipulation of quantum information. Here we propose an approach to efficiently prepare such cat states in a Kerr-nonlinear resonator by the use of a two-photon drive. We show that this preparation is robust against single-photon loss. We moreover find that it is possible to remove undesirable phase evolution induced by a Kerr nonlinearity using a two-photon drive of appropriate amplitude and phase. Finally, we present a universal set of quantum logical gates that can be performed on the engineered eigenspace of the two-photon driven Kerr-nonlinear resonator.
Quantum states can be stabilized in the presence of intrinsic and environmental losses by either applying active feedback conditioned on an ancillary system or through reservoir engineering. Reservoir engineering maintains a desired quantum state through a combination of drives and designed entropy evacuation. We propose and implement a quantum reservoir engineering protocol that stabilizes Fock states in a microwave cavity. This protocol is realized with a circuit quantum electrodynamics platform where a Josephson junction provides direct, nonlinear coupling between two superconducting waveguide cavities. The nonlinear coupling results in a single photon resolved cross-Kerr effect between the two cavities enabling a photon number dependent coupling to a lossy environment. The quantum state of the microwave cavity is discussed in terms of a net polarization and is analyzed by a measurement of its steady state Wigner function.
111 - Rok Zitko 2016
Using the numerical renormalization group (NRG), we analyze the temperature dependence of the spectral function of a magnetic impurity described by the single-impurity Anderson model coupled to superconducting contacts. With increasing temperature the spectral weight is gradually transferred from the $delta$-peak (Shiba/Yu-Shiba-Rusinov/Andreev bound state) to the continuous sub-gap background, but both spectral features coexist at any finite temperature, i.e., the $delta$-peak itself persists to temperatures of order $Delta$. The continuous background is due to inelastic exchange scattering of Bogoliubov quasiparticles off the impurity and it is thermally activated since it requires a finite thermal population of quasiparticles above the gap. In the singlet regime for strong hybridization (charge-fluctuation regime) we detect the presence of an additional sub-gap structure just below the gap edges with thermally activated behavior, but with an activation energy equal to the Shiba state excitation energy. These peaks can be tentatively interpreted as Shiba bound states arising from the scattering of quasiparticles off the thermally excited sub-gap doublet Shiba states, i.e., as high-order Shiba states.
We introduce an optomechanical scheme for the probabilistic preparation of single-phonon Fock states of mechanical modes based on photo-subtraction. The quality of the produced mechanical state is confirmed by a number of indicators, including phonon statistics and conditional fidelity. We assess the detrimental effect of parameters such as the temperature of the mechanical system and address the feasibility of the scheme with state-of-the-art technology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا