Do you want to publish a course? Click here

Solitons in a one-dimensional Wigner crystal

183   0   0.0 ( 0 )
 Added by Michael Pustilnik
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. We demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of elementary excitations, which can be identified with solitons in the classical limit. We compute the corresponding excitation spectrum and argue that the solitons have a parametrically small decay rate at low energies. We discuss implications of our results for the behavior of the dynamic structure factor.



rate research

Read More

The spatial Fourier spectrum of the electron density distribution in a finite 1D system and the distribution function of electrons over single-particle states are studied in detail to show that there are two universal features in their behavior, which characterize the electron ordering and the deformation of Wigner crystal by boundaries. The distribution function has a $delta$-like singularity at the Fermi momentum $k_F$. The Fourier spectrum of the density has a step-like form at the wavevector $2k_F$, with the harmonics being absent or vanishing above this threshold. These features are found by calculations using exact diagonalization method. They are shown to be caused by Wigner ordering of electrons, affected by the boundaries. However the common Luttinger liquid model with open boundaries fails to capture these features, because it overestimates the deformation of the Wigner crystal. An improvement of the Luttinger liquid model is proposed which allows one to describe the above features correctly. It is based on the corrected form of the density operator conserving the particle number.
Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL) which has now been observed in a number of experimental systems. Interactions are even more important at low carrier density, and in the limit when the long-ranged Coulomb potential is the dominant energy scale, the electron liquid is expected to become a periodically ordered solid known as the Wigner crystal. In 1D, the Wigner crystal has been predicted to exhibit novel spin and magnetic properties not present in an ordinary LL. However, despite recent progress in coupled quantum wires, unambiguous experimental demonstration of this state has not been possible due to the role of disorder. Here, we demonstrate using low-temperature single-electron transport spectroscopy that a hole gas in low-disorder carbon nanotubes with a band gap is a realization of the 1D Wigner crystal. Our observation can lead to unprecedented control over the behavior of the spatially separated system of carriers, and could be used to realize solid state quantum computing with long coherence times.
154 - K. A. Matveev , A. V. Andreev , 2011
We consider a system of one-dimensional spinless particles interacting via long-range repulsion. In the limit of strong interactions the system is a Wigner crystal, with excitations analogous to phonons in solids. In a harmonic crystal the phonons do not interact, and the system never reaches thermal equilibrium. We account for the anharmonism of the Wigner crystal and find the rate at which it approaches equilibrium. The full equilibration of the system requires umklapp scattering of phonons, resulting in exponential suppression of the equilibration rate at low temperatures.
We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zero-temperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. Our consideration is applicable to all single-component Galilean-invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.
We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the excitation spectrum is nonlinear. Although at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a theoretical description of the approach of the system to thermal equilibrium. The typical relaxation rate scales as the fifth power of temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا