Do you want to publish a course? Click here

Solitary wave solutions for nonlinear partial differential equations containing monomials of odd and even grades with respect to participating derivatives

210   0   0.0 ( 0 )
 Added by Nikolay Vitanov k
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply the method of simplest equation for obtaining exact solitary traveling-wave solutions of nonlinear partial differential equations that contain monomials of odd and even grade with respect to participating derivatives. We consider first the general case of presence of monomials of the both (odd and even) grades and then turn to the two particular cases of nonlinear equations that contain only monomials of odd grade or only monomials of even grade. The methodology is illustrated by numerous examples.



rate research

Read More

The method of simplest equation is applied for obtaining exact solitary traveling-wave solutions of nonlinear partial differential equations that contain monomials of odd and even grade with respect to participating derivatives. The used simplest equation is $f_xi^2 = n^2(f^2 -f^{(2n+2)/n})$. The developed methodology is illustrated on two examples of classes of nonlinear partial differential equations that contain: (i) only monomials of odd grade with respect to participating derivatives; (ii) only monomials of even grade with respect to participating derivatives. The obtained solitary wave solution for the case (i) contains as particular cases the solitary wave solutions of Korteweg-deVries equation and of a version of the modified Korteweg-deVries equation.
We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau-Hyman, Rosenau-Pikovsky and Rosenau-Hyman-Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa-Holm, Degasperis-Procesi and Dullin-Gotwald-Holm equations. In both cases, we obtain new classes of solutions not studied before.
We discuss a version the methodology for obtaining exact solutions of nonlinear partial differential equations based on the possibility for use of: (i) more than one simplest equation; (ii) relationship that contains as particular cases the relationship used by Hirota cite{hirota} and the relationship used in the previous version of the methodology; (iii) transformation of the solution that contains as particular case the possibility of use of the Painleve expansion; (iv) more than one balance equation. The discussed version of the methodology allows: (i) obtaining multi-soliton solutions of nonlinear partial differential equations if such solutions do exist; (ii) obtaining particular solutions of nonintegrable nonlinear partial differential equations. Several examples for the application of the methodology are discussed. Special attention is devoted to the use of the simplest equation $f_xi =n[f^{(n-1)/n} - f^{(n+1)/n}]$ where $n$ is a positive real number. This simplest equation allows us to obtain exact solutions of nonlinear partial differential equations containing fractional powers.
78 - Nikolay K. Vitanov 2019
We present a short review of the evolution of the methodology of the Method of simplest equation for obtaining exact particular solutions of nonlinear partial differential equations (NPDEs) and the recent extension of a version of this methodology called Modified method of simplest equation. This extension makes the methodology capable to lead to solutions of nonlinear partial differential equations that are more complicated than a single solitary wave.
This is the first of two papers concerning saddle-shaped solutions to the semilinear equation $L_K u = f(u)$ in $mathbb{R}^{2m}$, where $L_K$ is a linear elliptic integro-differential operator and $f$ is of Allen-Cahn type. Saddle-shaped solutions are doubly radial, odd with respect to the Simons cone ${(x, x) in mathbb{R}^m times mathbb{R}^m , : , |x| = |x|}$, and vanish only on this set. By the odd symmetry, $L_K$ coincides with a new operator $L_K^{mathcal{O}}$ which acts on functions defined only on one side of the Simons cone, ${|x|>|x|}$, and that vanish on it. This operator $L_K^{mathcal{O}}$, which corresponds to reflect a function oddly and then apply $L_K$, has a kernel on ${|x|>|x|}$ which is different from $K$. In this first paper, we characterize the kernels $K$ for which the new kernel is positive and therefore one can develop a theory on the saddle-shaped solution. The necessary and sufficient condition for this turns out to be that $K$ is radially symmetric and $taumapsto K(sqrt tau)$ is a strictly convex function. Assuming this, we prove an energy estimate for doubly radial odd minimizers and the existence of saddle-shaped solution. In a subsequent article, part II, further qualitative properties of saddle-shaped solutions will be established, such as their asymptotic behavior, a maximum principle for the linearized operator, and their uniqueness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا