We experimentally study the energy-temperature relationship of a harmonically trapped Bose-Einstein condensate by transferring a known quantity of energy to the condensate and measuring the resulting temperature change. We consider two methods of heat transfer, the first using a free expansion under gravity and the second using an optical standing wave to diffract the atoms in the potential. We investigate the effect of interactions on the thermodynamics and compare our results to various finite temperature theories.
We predict the existence of a dip below unity in the second-order coherence function of a partially condensed ideal Bose gas in harmonic confinement, signaling the anticorrelation of density fluctuations in the sample. The dip in the second-order coherence function is revealed in a canonical-ensemble calculation, corresponding to a system with fixed total number of particles. In a grand-canonical ensemble description, this dip is obscured by the occupation-number fluctuation catastrophe of the ideal Bose gas. The anticorrelation is most pronounced in highly anisotropic trap geometries containing small particle numbers. We explain the fundamental physical mechanism which underlies this phenomenon, and its relevance to experiments on interacting Bose gases.
We study a harmonically confined Bose-Bose mixture using quantum Monte Carlo methods. Our results for the density profiles are systematically compared with mean-field predictions derived through the Gross-Pitaevskii equation in the same conditions. The phase space as a function of the interaction strengths and the relation between masses is quite rich. The miscibility criterion for the homogeneous system applies rather well to the system, with some discrepancies close to the critical line for separation. We observe significant differences between the mean-field results and the Monte Carlo ones, that magnify when the asymmetry between masses increases. In the analyzed interaction regime, we observe universality of our results which extend beyond the applicability regime for the Gross-Pitaevskii equation.
We numerically model experiments on the superfluid critical velocity of an elongated, harmonically trapped Bose-Einstein condensate as reported by [P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160405 (2007)]. These experiments swept an obstacle formed by an optical dipole potential through the long axis of the condensate at constant velocity. Their results found an increase in the resulting density fluctuations of the condensate above an obstacle velocity of $vapprox 0.3$ mm/s, suggestive of a superfluid critical velocity substantially less than the average speed of sound. However, our analysis shows that the that the experimental observations of Engels and Atherton are in fact consistent with a superfluid critical velocity equal to the local speed of sound. We construct a model of energy transfer to the system based on the local density approximation to explain the experimental observations, and propose and simulate experiments that sweep potentials through harmonically trapped condensates at a constant fraction of the local speed of sound. We find that this leads to a sudden onset of excitations above a critical fraction, in agreement with the Landau criterion for superfluidity.
We study Tans contact, i.e. the coefficient of the high-momentum tails of the momentum distribution at leading order, for an interacting one-dimensional Bose gas subjected to a harmonic confinement. Using a strong-coupling systematic expansion of the ground-state energy of the homogeneous system stemming from the Bethe-Ansatz solution, together with the local-density approximation, we obtain the strong-coupling expansion for Tans contact of the harmonically trapped gas. Also, we use a very accurate conjecture for the ground-state energy of the homogeneous system to obtain an approximate expression for Tans contact for arbitrary interaction strength, thus estimating the accuracy of the strong-coupling expansion. Our results are relevant for ongoing experiments with ultracold atomic gases.
Employing a short-range two-channel description we derive an analytic model of atoms in isotropic and anisotropic harmonic traps at a Feshbach resonance. On this basis we obtain a new parameterization of the energy-dependent scattering length which differs from the one previously employed. We validate the model by comparison to full numerical calculations for Li-Rb and explain quantitatively the experimental observation of a resonance shift and trap-induced molecules in exited bands. Finally, we analyze the bound state admixture and Landau-Zener transition probabilities.