Do you want to publish a course? Click here

Recombination of W18+ ions with electrons: Absolute rate coefficients from a storage-ring experiment and from theoretical calculations

474   0   0.0 ( 0 )
 Added by Stefan Schippers
 Publication date 2014
  fields Physics
and research's language is English
 Authors K. Spruck




Ask ChatGPT about the research

We present new experimentally measured and theoretically calculated rate coefficients for the electron-ion recombination of W$^{18+}$([Kr] $4d^{10}$ $4f^{10}$) forming W$^{17+}$. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping, recombination resonances. In the temperature range where the fractional abundance of W$^{18+}$ is expected to peak in a fusion plasma, the experimentally derived Maxwellian recombination rate coefficient is 5 to 10 times larger than that which is currently recommended for plasma modeling. The complexity of the atomic structure of the open-$4f$-system under study makes the theoretical calculations extremely demanding. Nevertheless, the results of new Breit-Wigner partitioned dielectronic recombination calculations agree reasonably well with the experimental findings. This also gives confidence in the ability of the theory to generate sufficiently accurate atomic data for the plasma modeling of other complex ions.



rate research

Read More

530 - D. Bernhardt 2014
Rate coefficients for photorecombination (PR) and cross sections for electron-impact ionization (EII) of Fe$^{14+}$ forming Fe$^{13+}$ and Fe$^{15+}$, respectively, have been measured by employing the electron-ion merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR and EII of Fe$^{14+}$ ions in a plasma are derived from the experimental measurements. Simple parametrizations of the experimentally derived plasma rate coefficients are provided for use in the modeling of photoionized and collisionally ionized plasmas. In the temperature ranges where Fe$^{14+}$ is expected to form in such plasmas the latest theoretical rate coefficients of Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron. Astrophys. 466, 771 (2007)] for EII agree with the experimental results to within the experimental uncertainties. Common features in the PR and EII resonance structures are identified and discussed.
We report measured rate coefficients for electron-ion recombination for Si10+ forming Si9+ and for Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ [Orban et al. 2010, Astrophys. J. 721, 1603] to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.
We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence.
Dielectronic recombination (DR) of xenonlike W20+ forming W19+ has been studied experimentally at a heavy-ion storage-ring. A merged-beams method has been employed for obtaining absolute rate coefficients for electron-ion recombination in the collision energy range 0-140 eV. The measured rate coefficient is dominated by strong DR resonances even at the lowest experimental energies. At plasma temperatures where the fractional abundance of W20+ is expected to peak in a fusion plasma, the experimentally derived plasma recombination rate coefficient is over a factor of 4 larger than the theoretically-calculated rate coefficient which is currently used in fusion plasma modeling. The largest part of this discrepancy stems most probably from the neglect in the theoretical calculations of DR associated with fine-structure excitations of the W20+([Kr] 4d10 4f8) ion core.
The electron-ion recombination rate coefficient for Si IV forming Si III was measured at the heavy-ion storage-ring TSR. The experimental electron-ion collision energy range of 0-186 eV encompassed the 2p(6) nl nl dielectronic recombination (DR) resonances associated with 3s to nl core excitations, 2s 2p(6) 3s nl nl resonances associated with 2s to nl (n=3,4) core excitations, and 2p(5) 3s nl nl resonances associated with 2p to nl (n=3,...,infinity) core excitations. The experimental DR results are compared with theoretical calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via the 3s to 3p nl and 3s to 3d nl (both n=3,...,6) and 2p(5) 3s 3l nl (n=3,4) capture channels. Finally, the experimental and theoretical plasma DR rate coefficients for Si IV forming Si III are derived and compared with previously available results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا