No Arabic abstract
We present the midrapidity charged pion invariant cross sections and the ratio of $pi^-$-to-$pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $pi^-$-to-$pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $sim$0.03--0.16.
PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $pi^0$ production at midrapidity from $p$$+$$p$ collisions at $sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $xsim0.01$, and thus provide additional constraints on the value of $Delta G$. The results confirm the evidence for nonzero $Delta G$ using a different production channel in a complementary kinematic region.
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p+p collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 < p_T < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with recent global parameterizations disfavoring large gluon polarization.
Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $pi^0$ and $eta$ production in $sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $Delta G^{[0.05,0.2]}_{mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $Delta chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $Delta G^{[0.05,0.2]}_{mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.
The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.
We report the double helicity asymmetry, $A_{LL}^{J/psi}$, in inclusive $J/psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $sqrt{s}=510$ GeV longitudinally polarized $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, $J/psi$ particles are predominantly produced through gluon-gluon scatterings, thus $A_{LL}^{J/psi}$ is sensitive to the gluon polarization inside the proton. We measured $A_{LL}^{J/psi}$ by detecting the decay daughter muon pairs $mu^+ mu^-$ within the PHENIX muon spectrometers in the rapidity range $1.2<|y|<2.2$. In this kinematic range, we measured the $A_{LL}^{J/psi}$ to be $0.012 pm 0.010$~(stat)~$pm$~$0.003$(syst). The $A_{LL}^{J/psi}$ can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken $x$: one at moderate range $x approx 0.05$ where recent RHIC data of jet and $pi^0$ double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-$x$ region $x approx 2times 10^{-3}$. Thus our new results could be used to further constrain the gluon polarization for $x< 0.05$.