Do you want to publish a course? Click here

A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T>~100K

117   0   0.0 ( 0 )
 Added by Vitaly Kresin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A unique property of size-resolved metal nanocluster particles is their superatom-like electronic shell structure. The shell levels are highly degenerate, and it has been predicted that this can enable exceptionally strong superconducting-type electron pair correlations in certain clusters composed of just tens to hundreds of atoms. Here we report on the observation of a possible spectroscopic signature of such an effect. A bulge-like feature appears in the photoionization yield curve of a free cold aluminum cluster and shows a rapid rise as the temperature approaches approximately 100 K. This is an unusual effect, not previously reported for clusters. Its characteristics are consistent with an increase in the effective density of states accompanying a pairing transition, which suggests a high-temperature superconducting state with Tc>~100 K. Our results highlight the promise of metal nanoclusters as high-Tc building blocks for materials and networks.



rate research

Read More

A unique property of metal nanoclusters is the superatom shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise of the near-threshold density of states of several clusters ($Al_{37,44,66,68}$) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with $T_c$>~100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-$T_c$ materials, devices, and networks.
SrTiO$_3$ is a superconducting semiconductor with a pairing mechanism that is not well understood. SrTiO$_3$ undergoes a ferroelastic transition at $T=$ 105 K, leading to the formation of domains with boundaries that can couple to electronic properties. At two-dimensional SrTiO$_3$ interfaces, the orientation of these ferroelastic domains is known to couple to the electron density, leading to electron-rich regions that favor out-of-plane distortions and electron-poor regions that favor in-plane distortion. Here we show that ferroelastic domain walls support low energy excitations that are analogous to capillary waves at the interface of two fluids. We propose that these capillary waves mediate electron pairing at the LaAlO$_3$/SrTiO$_3$ interface, resulting in superconductivity around the edges of electron-rich regions. This mechanism is consistent with recent experimental results reported by Pai et al. [PRL $bf{120}$, 147001 (2018)]
We report first principles theory based electronic structure studies of a semiconducting stoichiometric cage-like Cd9Te9 cluster. Substantial changes are observed in the electronic structure of the cluster on passivation with fictitious hydrogen atoms, in particular, widening of the energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital and enhancement in stability of cluster is seen. The cluster, when substitutionally mono-doped for a Cd by a set of 3d and 4d transition metal atoms (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh and Pd), is found to acquire polarization as seen from spin resolved density of states near Fermi level. Further, such mono-doping in passivated cluster shows half-metallic behavior. Mapping of partial density of states of each system on that of undoped cluster reveals additional levels caused by doping each TM atom separately. In the 3d elemental doping, Ti and Mn doping result into electron type doping whereas all other cases result into hole doped systems. For all the 4d elements studied, it is akin to the doping with holes for Cd substitution in the outer ring, whereas for Ru and Rh, there is electron type doping in case of substitution for Cd in central ring upon passivation. A comparison of partial density of states plots for bare and passivated clusters, on doping with transition metal atoms, suggests suitability of the cage-like cluster for spintronics applications.
We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amplitude of the BCS order parameter averaged over the Boltzman distribution of initial states exhibits damped oscillations with a relatively short decay time. The latter is determined by the temperature, the single-particle level spacing, and the ground state value of the BCS gap for the new coupling. In contrast, the decay is essentially absent when the system was in a superfluid phase before the coupling increase.
In this review article, we show our recent results relating to the undoped (Ce-free) superconductivity in the electron-doped high-Tc cuprates with the so-called T structure. For an introduction, we briefly mention the characteristics of the electron-doped T-cuprates, including the reduction annealing, conventional phase diagram and undoped superconductivity. Then, our transport and magnetic results and results relating to the superconducting pairing symmetry of the undoped and underdoped T-cuprates are shown. Collaborating spectroscopic and nuclear magnetic resonance results are also shown briefly. It has been found that, through the reduction annealing, a strongly localized state of carriers accompanied by an antiferromagnetic pseudogap in the as-grown samples changes to a metallic and superconducting state with a short-range magnetic order in the reduced superconducting samples. The formation of the short-range magnetic order due to a very small amount of excess oxygen in the reduced superconducting samples suggests that the T-cuprates exhibiting the undoped superconductivity in the parent compounds are regarded as strongly correlated electron systems, as well as the hole-doped high-Tc cuprates. We show our proposed electronic structure model to understand the undoped superconductivity. Finally, unsolved future issues of the T-cuprates are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا