Do you want to publish a course? Click here

Kiso Supernova Survey (KISS): Survey Strategy

129   0   0.0 ( 0 )
 Added by Tomoki Morokuma
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kiso Supernova Survey (KISS) is a high-cadence optical wide-field supernova (SN) survey. The primary goal of the survey is to catch the very early light of a SN, during the shock breakout phase. Detection of SN shock breakouts combined with multi-band photometry obtained with other facilities would provide detailed physical information on the progenitor stars of SNe. The survey is performed using a 2.2x2.2 deg field-of-view instrument on the 1.05-m Kiso Schmidt telescope, the Kiso Wide Field Camera (KWFC). We take a three-minute exposure in g-band once every hour in our survey, reaching magnitude g~20-21. About 100 nights of telescope time per year have been spent on the survey since April 2012. The number of the shock breakout detections is estimated to be of order of 1 during our 3-year project. This paper summarizes the KISS project including the KWFC observing setup, the survey strategy, the data reduction system, and CBET-reported SNe discovered so far by KISS.



rate research

Read More

The Gaia-ESO survey (GES) is now in its fifth and last year of observations, and has already produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of: (i) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars, and with a large range of metallicities, as well as including fast rotators, emission line objects, stars affected by veiling and so on; (ii) the variety of observing setups, with different wavelength ranges and resolution; and (iii) the choice of analyzing the data with many different state-of-the art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4 - the fourth internal GES data release, that will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average offsets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals.
We present a sample of supernovae Type IIn (SNe IIn) from the untargeted, magnitude-limited surveys of the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). The SNe IIn found and followed by the PTF/iPTF were used to select a sample of 42 events with useful constraints on the rise times as well as with available post-peak photometry. The sample SNe were discovered in 2009-2016 and have at least one low-resolution classification spectrum, as well as photometry from the P48 and P60 telescopes at Palomar Observatory. We study the light-curve properties of these SNe IIn using spline fits (for the peak and the declining portion) and template matching (for the rising portion). We find that the typical rise times are divided into fast and slow risers at $20pm6$ d and $50pm11$ d, respectively. The decline rates are possibly divided into two clusters, but this division has weak statistical significance. We find no significant correlation between the peak luminosity of SNe IIn and their rise times, but the more luminous SNe IIn are generally found to be more long-lasting. Slowly rising SNe IIn are generally found to decline slowly. The SNe in our sample were hosted by galaxies of absolute magnitude $-22 lesssim M_g lesssim -13$ mag. The K-corrections at light-curve peak of the SNe IIn in our sample are found to be within 0.2 mag for the observers frame $r$-band, for SNe at redshifts $z < 0.25$. By applying K-corrections and also including ostensibly superluminous SNe IIn, we find that the peak magnitudes are $M_{rm peak}^{r} = -19.18pm1.32$ mag. We conclude that the occurrence of conspicuous light-curve bumps in SNe IIn, such as in iPTF13z, are limited to $1.4^{+14.6}_{-1.0} %$ of the SNe IIn. We also investigate a possible sub-type of SNe IIn with a fast rise to a $gtrsim 50$ d plateau followed by a slow, linear decline.
We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the ALMA 210--300 and 340--360 GHz spectra, we detected cold (20--170 K) CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J=6--5 and 5--4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities cause mixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of 28SiO/29SiO>13, 28SiO/30SiO>14, and 12CO/13CO>21, with the most likely limits of 28SiO/29SiO>128, 28SiO/30SiO>189. Low 29Si and 30Si abundances in SN 1987A are consistent with nucleosynthesis models that show inefficient formation of neutron-rich isotopes in a low metallicity environment, such as the Large Magellanic Cloud. The deduced large mass of HCO+ (~5x10^-6 Msun) and small SiS mass (<6x10^-5 Msun) might be explained by some mixing of elements immediately after the explosion. The mixing might have caused some hydrogen from the envelope to sink into carbon and oxygen-rich zones after the explosion, enabling the formation of a substantial mass of HCO+. Oxygen atoms may have penetrated into silicon and sulphur zones, suppressing formation of SiS. Our ALMA observations open up a new window to investigate chemistry, dynamics and explosive-nucleosynthesis in supernovae.
The current status of and motivation for the 4MOST Survey Strategy, as developed by the Consortium science team, are presented here. Key elements of the strategy are described, such as sky coverage, number of visits and total exposure times in different parts of the sky, and how to deal with different observing conditions. The task of organising the strategy is not simple, with many different surveys that have vastly different target brightnesses and densities, sample completeness levels, and signal-to-noise requirements. We introduce here a number of concepts that we will use to ensure all surveys are optimised. Astronomers who are planning to submit a Participating Survey proposal are strongly encouraged to read this article and any relevant 4MOST Survey articles in this issue of The Messenger such that they can optimally complement and benefit from the planned surveys of the 4MOST Consortium.
We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03<z<0.09). Using a sample of 89 CCSN we find a volume-averaged rate of (1.06 +/- 0.19) x 10**(-4)/(yr Mpc**3) at a mean redshift of 0.072 +/- 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا