Do you want to publish a course? Click here

Probabilistic Galois Theory over $P$-adic Fields

232   0   0.0 ( 0 )
 Added by Benjamin Weiss
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We estimate several probability distributions arising from the study of random, monic polynomials of degree $n$ with coefficients in the integers of a general $p$-adic field $K_{mathfrak{p}}$ having residue field with $q= p^f$ elements. We estimate the distribution of the degrees of irreducible factors of the polynomials, with tight error bounds valid when $q> n^2+n$. We also estimate the distribution of Galois groups of such polynomials, showing that for fixed $n$, almost all Galois groups are cyclic in the limit $q to infty$. In particular, we show that the Galois groups are cyclic with probability at least $1 - frac{1}{q}$. We obtain exact formulas in the case of $K_{mathfrak{p}}$ for all $p > n$ when $n=2$ and $n=3$.



rate research

Read More

225 - Hel`ene Esnault 2007
If the $ell$-adic cohomology of a projective smooth variety, defined over a $frak{p}$-adic field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then any model over the ring of integers of $K$ has a $k$-rational point. This slightly improves our earlier result math/0405318: we needed there the model to be regular (but then our result was more general: we obtained a congruence for the number of points, and $K$ could be local of characteristic $p>0$).
176 - Ruochuan Liu , Daqing Wan 2016
For a global function field K of positive characteristic p, we show that Artin conjecture for L-functions of geometric p-adic Galois representations of K is true in a non-trivial p-adic disk but is false in the full p-adic plane. In particular, we prove the non-rationality of the geometric unit root L-functions.
We discuss the $ell$-adic case of Mazurs Program B over $mathbb{Q}$, the problem of classifying the possible images of $ell$-adic Galois representations attached to elliptic curves $E$ over $mathbb{Q}$, equivalently, classifying the rational points on the corresponding modular curves. The primes $ell=2$ and $ellge 13$ are addressed by prior work, so we focus on the remaining primes $ell = 3, 5, 7, 11$. For each of these $ell$, we compute the directed graph of arithmetically maximal $ell$-power level modular curves, compute explicit equations for most of them, and classify the rational points on all of them except $X_{{rm ns}}^{+}(N)$, for $N = 27, 25, 49, 121$, and two level $49$ curves of genus $9$ whose Jacobians have analytic rank $9$. Aside from the $ell$-adic images that are known to arise for infinitely many $overline{mathbb{Q}}$-isomorphism classes of elliptic curves $E/mathbb{Q}$, we find only 22 exceptional subgroups that arise for any prime $ell$ and any $E/mathbb{Q}$ without complex multiplication; these exceptional subgroups are realized by 20 non-CM rational $j$-invariants. We conjecture that this list of 22 exceptional subgroups is complete and show that any counterexamples must arise from unexpected rational points on $X_{rm ns}^+(ell)$ with $ellge 17$, or one of the six modular curves noted above. This gives us an efficient algorithm to compute the $ell$-adic images of Galois for any non-CM elliptic curve over $mathbb{Q}$. In an appendix with John Voight we generalize Ribets observation that simple abelian varieties attached to newforms on $Gamma_1(N)$ are of ${rm GL}_2$-type; this extends Kolyvagins theorem that analytic rank zero implies algebraic rank zero to isogeny factors of the Jacobian of $X_H$.
Let F be a function field in one variable over a p-adic field and D a central division algebra over F of degree n coprime to p. We prove that Suslin invariant detects whether an element in F is a reduced norm. This leads to a local-global principle for reduced norms with respect to all discrete valuations of F.
We generalize the classical theory of periodic continued fractions (PCFs) over ${mathbf Z}$ to rings ${mathcal O}$ of $S$-integers in a number field. Let ${mathcal B}={beta, {beta^*}}$ be the multi-set of roots of a quadratic polynomial in ${mathcal O}[x]$. We show that PCFs $P=[b_1,ldots,b_N,bar{a_1ldots ,a_k}]$ of type $(N,k)$ potentially converging to a limit in ${mathcal B}$ are given by ${mathcal O}$-points on an affine variety $V:=V({mathcal B})_{N,k}$ generically of dimension $N+k-2$. We give the equations of $V$ in terms of the continuant polynomials of Wallis and Euler. The integral points $V({mathcal O})$ are related to writing matrices in $textrm{SL}_2({mathcal O})$ as products of elementary matrices. We give an algorithm to determine if a PCF converges and, if so, to compute its limit. Our standard example generalizes the PCF $sqrt{2}=[1,bar{2}]$ to the ${mathbf Z}_2$-extension of ${mathbf Q}$: $F_n={mathbf Q}(alpha_n)$, $alpha_{n}:=2cos(2pi/2^{n+2})$, with integers ${mathcal O}_n={mathbf Z}[alpha_n]$. We want to find the PCFs of $alpha_{n+1}$ over ${mathcal O}_{n}$ of type $(N,k)$ by finding the ${mathcal O}_{n}$-points on $V({mathcal B}_{n+1})_{N,k}$ for ${mathcal B}_{n+1}:={alpha_{n+1}, -alpha_{n+1}}$. There are three types $(N,k)=(0,3), (1,2), (2,1)$ such that the associated PCF variety $V({mathcal B})_{N,k}$ is a curve; we analyze these curves. For generic ${mathcal B}$, Siegels theorem implies that each of these three $V({mathcal B})_{N,k}({mathcal O})$ is finite. We find all the ${mathcal O}_n$-points on these PCF curves $V({mathcal B}_{n+1})_{N,k}$ for $n=0,1$. When $n=1$ we make extensive use of Skolems $p$-adic method for $p=2$, including its application to Ljunggrens equation $x^2 + 1 =2y^4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا