We construct a manifestly covariant differential Noether charge for theories with Chern-Simons terms in higher dimensional spacetimes. This is in contrast to Tachikawas extension of the standard Lee-Iyer-Wald formalism which results in a non-covariant differential Noether charge for Chern-Simons terms. On a bifurcation surface, our differential Noether charge integrates to the Wald-like entropy formula proposed by Tachikawa in arXiv:hep-th/0611141.
The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of operators that splits the fundamental fields according to their individual degrees of freedom. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes gets a new insight. Our conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the Chern-Simons term with a time-like vector of the type $v^{mu} = (mu,vec{0})$. Spectral consistency imposes taht the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to usual gauge theories whenever conditions for suppression of tachyons and ghosts are required.
Based on recent discussions on the so-called unconventional supersymmetry, we propose a 5D Chern-Simons AdS-$mathcal{N}$-SUGRA formulation without gravitino fields and show that a residual local SUSY is preserved. We explore the properties of CS theories to find a solution to the field equations in a 5D manifold. With a Randall-Sundrum-type ansatz, we show that this particular dimensional reduction is compatible with SUSY, and some classes of 4D solutions are then analyzed.
We show that conformal Chern-Simons gravity in three dimensions has various holographic descriptions. They depend on the boundary conditions on the conformal equivalence class and the Weyl factor, even when the former is restricted to asymptotic Anti-deSitter behavior. For constant or fixed Weyl factor our results agree with a suitable scaling limit of topologically massive gravity results. For varying Weyl factor we find an enhancement of the asymptotic symmetry group, the details of which depend on certain choices. We focus on a particular example where an affine u(1) algebra related to holomorphic Weyl rescalings shifts one of the central charges by 1. The Weyl factor then behaves as a free chiral boson in the dual conformal field theory.
We compute the full contribution of flavor and (or) Lorentz anomalies to the thermodynamic partition function. Apart from the Wess-Zumino consistency condition the Euclidean generating function must satisfy an extra requirement which we refer to as `consistency with the Euclidean vacuum. The latter requirement fixes all Chern-Simons terms that arise in a particular Kaluza-Klein reduction of the theory. The solution to both conditions may be encoded in a `thermal anomaly polynomial which we compute. Our construction fixes all the thermodynamic response parameters of a hydrodynamic theory associated with anomalies.