No Arabic abstract
Based on recent discussions on the so-called unconventional supersymmetry, we propose a 5D Chern-Simons AdS-$mathcal{N}$-SUGRA formulation without gravitino fields and show that a residual local SUSY is preserved. We explore the properties of CS theories to find a solution to the field equations in a 5D manifold. With a Randall-Sundrum-type ansatz, we show that this particular dimensional reduction is compatible with SUSY, and some classes of 4D solutions are then analyzed.
We study static black hole solutions with locally spherical horizons coupled to non-Abelian field in $mathcal{N}=4$ Chern-Simons AdS$_5$ supergravity. They are governed by three parameters associated to the mass, axial torsion and amplitude of the internal soliton, and two ones to the gravitational hair. They describe geometries that can be a global AdS space, naked singularity or a (non-)extremal black hole. We analyze physical properties of two inequivalent asymptotically AdS solutions when the spatial section at radial infinity is either a 3-sphere or a projective 3-space. An important feature of these 3-parametric solutions is that they possess a topological structure including two $SU(2)$ solitons that wind nontrivially around the black hole horizon, as characterized by the Pontryagin index. In the extremal black hole limit, the solitons strengths match and a soliton-antisoliton system unwinds. That limit admits both non-BPS and BPS configurations. For the latter, the pure gauge and non-pure gauge solutions preserve $1/2$ and $1/16$ of the original supersymmetries, respectively. In a general case, we compute conserved charges in Hamiltonian formalism, finding many similarities with standard supergravity black holes.
In this work, we study the behavior of the nonabelian five-dimensional Chern-Simons term at finite temperature regime in order to verify the possible nonanalyticity. We employ two methods, a perturbative and a non-perturbative one. No scheme of regularization is needed, and we verify the nonanalyticity of the self-energy of the photon in the origin of momentum space by two conditions that do not commute, namely, the static limit $(k_0=0,vec krightarrow 0)$ and the long wavelength limit $(k_0rightarrow 0,vec k= 0)$, while its tensorial structure holds in both limits.
We construct a manifestly covariant differential Noether charge for theories with Chern-Simons terms in higher dimensional spacetimes. This is in contrast to Tachikawas extension of the standard Lee-Iyer-Wald formalism which results in a non-covariant differential Noether charge for Chern-Simons terms. On a bifurcation surface, our differential Noether charge integrates to the Wald-like entropy formula proposed by Tachikawa in arXiv:hep-th/0611141.
We consider a five-dimensional Einstein-Chern-Simons action which is composed of a gravitational sector and a sector of matter, where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-Hilbert action, and where the matter sector is given by a perfect fluid. The gravitational lagrangian is obtained gauging some Lie-algebras, which in turn, were obtained by S-expansion procedure of Anti-de Sitter and de Sitter algebras. On the cosmological plane, we discuss the field equations resulting from the Anti-de Sitter and de Sitter frameworks and we show analogies with four-dimensional cosmological schemes.
We show that conformal Chern-Simons gravity in three dimensions has various holographic descriptions. They depend on the boundary conditions on the conformal equivalence class and the Weyl factor, even when the former is restricted to asymptotic Anti-deSitter behavior. For constant or fixed Weyl factor our results agree with a suitable scaling limit of topologically massive gravity results. For varying Weyl factor we find an enhancement of the asymptotic symmetry group, the details of which depend on certain choices. We focus on a particular example where an affine u(1) algebra related to holomorphic Weyl rescalings shifts one of the central charges by 1. The Weyl factor then behaves as a free chiral boson in the dual conformal field theory.