We apply a recently-developed low-field technique to inductively measure the critical pair momentum $p_c$ in thin, underdoped films of Y$_{1-x}$Ca$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ and Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ reflecting a wide range of hole doping. We observe that $p_c propto hbar/xi$ scales with $T_c$ and therefore superfluid density $n_s(Trightarrow0)$ in our two-dimensional cuprate films. This relationship was famously predicted by a universal model of the cuprates with a textit{doping-independent} superconducting gap, but has not been observed by high field measurements of the coherence length $xi$ due to field-induced phenomena not included in the theory.
The preformed-pairs theory of pseudogap physics in high-$T_C$ superconductors predicts a nonanalytic $T$-dependence for the $ab$-plane superfluid fraction, $rho_S$, at low temperatures in underdoped cuprates. We report high-precision measurements of $rho_S(T)$ on severely underdoped YBa$_2$Cu$_3$O$_{6+x}$ and Y$_{0.8}$Ca$_{0.2}$Ba$_2$Cu$_3$O$_{6+x}$ films. At low $T$, $rho_S$ looks more like $1 - T^2$ than $1 - T^{3/2}$, in disagreement with theory.
A Cooper pair insulator (CPI) phase emerges near the superconductor-insulator transitions of a number of strongly-disordered thin film systems. Much recent study has focused on a mechanism driving the underlying Cooper pair localization. We present data showing that a CPI phase develops in amorphous Pb$_{0.9}$Bi$_{0.1}$ films deposited onto nano-porous anodized aluminum oxide surfaces just as it has been shown to develop for a-Bi films. This result confirms the assertion that the CPI phase emerges due to the structure of the substrate. It supports the picture that nanoscale film thickness variations induced by the substrate drive the localization. Moreover, it implies that the CPI phase can be induced in any superconducting material that can be deposited onto this surface.
The low-energy quasiparticle excitations in hole- and electron-type cuprate superconductors are investigated via both experimental and theoretical means. It is found that the doping and momentum dependence of the empirical low-energy quasiparticle excitations is consistent with a scenario of coexisting competing orders and superconductivity in the ground state of the cuprates. This finding, based on zero-field quasiparticle spectra, is further corrobarated by the patially resolved vortex-state scanning tunneling spectroscopy, which reveals pseudogap-like features consistent with a remaining competing order inside the vortex core upon the suppression of superconductivity. The competing orders compatible with empirical observations include the charge-density wave and spin-density wave. In contrast, spectral characteristics derived from incorporating the $d$-density wave as a competing order appear unfavorable in comparison with experiments.
A major obstacle in understanding the mechanism of Cooper pairing in the cuprates is the existence of various intertwined orders associated with spin, charge, and Cooper pairs. Of particular importance is the ubiquitous charge order features that have been observed in a variety of cuprates, especially in the underdoped regime of the phase diagram. To explain the origin of the charge order and its implication to the superconducting phase, many theoretical models have been proposed, such as charge stripes, electronic nematicity, and Fermi surface instability. A highly appealing physical picture is the so-called pair density wave (PDW), a periodic modulation of Cooper paring in space, which may also induce a charge order. To elucidate the existence and nature of the PDW order, here we use scanning tunneling microscopy (STM) to investigate a severely underdoped Bi2Sr2CaCu2O8+{delta}, in which superconductivity just emerges on top of a pronounced checkerboard charge order. By analyzing the spatial distribution of the spectral features characteristic of superconductivity, we observe a periodic modulation of both the superconducting coherence peak and gap depth, demonstrating the existence of a density wave order of Cooper pairing. The PDW order has the same spatial periodicity as the charge order, and the amplitudes of the two orders exhibit clear positive correlation. These results shed important new lights on the origin of and interplay between the charge order and Cooper pairing modulation in the cuprates.
We first review evidence for the Cooper pair insulator (CPI) phase in amorphous nanohoneycomb (NHC) films. We then extend our analysis of superconducting islands induced by film thickness variations in NHC films to examine the evolution of island sizes through the magnetic field-driven SIT. Finally, using the islanding picture, we present a plausible model for the appearance and behavior of the CPI phase in amorphous NHC films.