Using X-ray photoelectron emission microscopy we have observed the coexistence of ferromagnetic and antiferromagnetic phases in a (3 at.%)Pd-doped FeRh epilayer. By quantitatively analyzing the resultant images we observe that as the epilayer transforms there is a change in magnetic domain symmetry from predominantly twofold at lower temperatures through to an equally weighted combination of both four and twofold symmetries at higher temperature. It is postulated that the lowered symmetry Ising-like nematic phase resides at the near-surface of the epilayer. This behavior is different to that of undoped FeRh suggesting that the variation in symmetry is driven by the competing structural and electronic interactions in the nanoscale FeRh film coupled with the effect of the chemical doping disorder.
Spin-wave resonance measurements were performed in the mixed magnetic phase regime of a Pd-doped FeRh epilayer that appears as the first-order ferromagnetic-antiferromagnetic phase transition takes place. It is seen that the measured value of the exchange stiffness is suppressed throughout the measurement range when compared to the expected value of the fully ferromagnetic regime, extracted via the independent means of a measurement of the Curie point, for only slight changes in the ferromagnetic volume fraction. This behavior is attributed to the influence of the antiferromagnetic phase: inspired by previous experiments that show ferromagnetism to be most persistent at the surfaces and interfaces of FeRh thin films, we modelled the antiferromagnetic phase as forming a thin layer in the middle of the epilayer through which the two ferromagnetic layers are coupled up to a certain critical thickness. The development of this exchange stiffness is then consistent with that expected from the development of an exchange coupling across the magnetic phase boundary, as a consequence of a thickness dependent phase transition taking place in the antiferromagnetic regions and is supported by complimentary computer simulations of atomistic spin-dynamics. The development of the Gilbert damping parameter extracted from the ferromagnetic resonance investigations is consistent with this picture.
Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment, which hinders the topological quantum states and limits data density in memory devices, or by a delicate noncollinear magnetic order with strong spin decoherence, both limiting their applicability. A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism in an anisotropic crystal environment. This new mechanism does not require magnetic dipolar or noncollinear fields. However, it has not been experimentally observed to date. Here we demonstrate this unconventional mechanism by measuring the AHE in an epilayer of a rutile collinear antiferromagnet RuO$_2$. The observed anomalous Hall conductivity is large, exceeding 300 S/cm, and is in agreement with the Berry phase topological transport contribution. Our results open a new unexplored chapter of time-reversal symmetry breaking phenomena in the abundant class of collinear antiferromagnetic materials.
We report a novel soft x-ray nanodiffraction study of antiferromagnetic domains in the strongly correlated bylayer manganite La$_{0.96}$Sr$_{2.04}$Mn$_{2}$O$_{7}$. We find that the antiferromagnetic domains are quenched, forming a unique domain pattern with each domain having an intrinsic memory of its spin direction, and with associated domain walls running along crystallographic directions. This can be explained by the presence of crystallographic or magnetic imperfections locked in during the crystal growth process which pin the antiferromagnetic domains. The antiferromagnetic domain pattern shows two distinct types of domain. We observe, in one type only, a periodic ripple in the manganese spin direction with a period of approximately 4 micrometer. We propose that the loss of inversion symmetry within a bilayer is responsible for this ripple structure through a Dzyaloshinskii-Moriya-type interaction.
Optical spectra of two-dimensional transition-metal dichalcogenides (TMDC) are influenced by complex multi-particle excitonic states. Their theoretical analysis requires solving the many-body problem, which in most cases, is prohibitively complicated. In this work, we calculate the optical spectra by exact diagonalization of the three-particle Hamiltonian within the Tamm-Dancoff approximation where the doping effects are accounted for via the Pauli blocking mechanism, modelled by a discretized mesh in the momentum space. The single-particle basis is extracted from the {it ab initio} calculations. Obtained three-particle eigenstates and the corresponding transition dipole matrix elements are used to calculate the linear absorption spectra as a function of the doping level. Results for negatively doped MoS$_2$ monolayer (ML) are in an excellent quantitative agreement with the available experimental data, validating our approach. The results predict additional spectral features due to the intervalley exciton that is optically dark in an undoped ML but is brightened by the doping. Our approach can be applied to a plethora of other atomically thin semiconductors, where the doping induced brightening of the many-particle states is also anticipated.
Topological insulators embody a new state of matter characterized entirely by the topological invariants of the bulk electronic structure rather than any form of spontaneously broken symmetry. Unlike the 2D quantum Hall or quantum spin-Hall-like systems, the three dimensional (3D) topological insulators can host magnetism and superconductivity which has generated widespread research activity in condensed-matter and materials-physics communities. Thus there is an explosion of interest in understanding the rich interplay between topological and the broken-symmetry states (such as superconductivity), greatly spurred by proposals that superconductivity introduced into certain band structures will host exotic quasiparticles which are of interest in quantum information science. The observations of superconductivity in doped Bi_2Se_3 (Cu$_x$Bi$_2$Se$_3$) and doped Bi_2Te_3 (Pd$_x$-Bi$_2$Te$_3$ T$_c$ $sim$ 5K) have raised many intriguing questions about the spin-orbit physics of these ternary complexes while any rigorous theory of superconductivity remains elusive. Here we present key measurements of electron dynamics in systematically tunable normal state of Cu$_x$Bi$_2$Se$_3$ (x=0 to 12%) gaining insights into its spin-orbit behavior and the topological nature of the surface where superconductivity takes place at low temperatures. Our data reveal that superconductivity occurs (in sample compositions) with electrons in a bulk relativistic kinematic regime and we identify that an unconventional doping mechanism causes the topological surface character of the undoped compound to be preserved at the Fermi level of the superconducting compound, where Cooper pairing occurs at low temperatures. These experimental observations provide important clues for developing a theory of topological-superconductivity in 3D topological insulators.
C. J. Kinane
,M. Loving
,M. A. de Vries
.
(2014)
.
"Observation of a temperature dependent asymmetry in the domain structure of a Pd doped FeRh epilayer"
.
Christian Kinane Dr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا