Do you want to publish a course? Click here

Two-dimensional spectroscopy for the study of ion Coulomb crystals

154   0   0.0 ( 0 )
 Added by Andreas Lemmer
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ion Coulomb crystals are currently establishing themselves as a highly controllable test-bed for mesoscopic systems of statistical mechanics. The detailed experimental interrogation of the dynamics of these crystals however remains an experimental challenge. In this work, we show how to extend the concepts of multi-dimensional nonlinear spectroscopy to the study of the dynamics of ion Coulomb crystals. The scheme we present can be realized with state-of-the-art technology and gives direct access to the dynamics, revealing nonlinear couplings even in the presence of thermal excitations. We illustrate the advantages of our proposal showing how two-dimensional spectroscopy can be used to detect signatures of a structural phase transition of the ion crystal, as well as resonant energy exchange between modes. Furthermore, we demonstrate in these examples how different decoherence mechanisms can be identified.



rate research

Read More

The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher dimensional systems. Here, we report on the trapping of multiple Barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform which is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nano-scale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.
99 - M. K. Joshi , A. Fabre , C. Maier 2020
We present experiments on polarization gradient cooling of Ca$^+$ multi-ion Coulomb crystals in a linear Paul trap. Polarization gradient cooling of the collective modes of motion whose eigenvectors have overlap with the symmetry axis of the trap is achieved by two counter-propagating laser beams with mutually orthogonal linear polarizations that are blue-detuned from the S$_{1/2}$ to P$_{1/2}$ transition. We demonstrate cooling of linear chains of up to 51 ions and 2D-crystals in zig-zag configuration with 22 ions. The cooling results are compared with numerical simulations and the predictions of a simple model of cooling in a moving polarization gradient.
We have developed an trapped ion system for producing two-dimensional (2D) ion crystals for applications in scalable quantum computing, quantum simulations, and 2D crystal phase transition and defect studies. The trap is a modification of a Paul trap with its ring electrode flattened and split into eight identical sectors, and its two endcap electrodes shaped as truncated hollow cones for laser and imaging optics access. All ten trap electrodes can be independently DC-biased to create various aspect ratio trap geometries. We trap and Doppler cool 2D crystals of up to 30 Ba+ ions and demonstrate the tunability of the trapping potential both in the plane of the crystal and in the transverse direction.
Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multi-layer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the new structure is composed of three planes, whose separation increases continuously from zero. We study the effects of thermal and quantum fluctuations by mapping this structural instability to the six-state clock model. A prominent implication of this mapping is that at finite temperature, fluctuations split the buckling instability into two thermal transitions, accompanied by the appearance of an intermediate critical phase. This phase is characterized by quasi-long-range order in the spatial tripartite pattern. It is manifested by broadened Bragg peaks at new wave vectors, whose line-shape provides a direct measurement of the temperature dependent exponent $eta(T)$ characteristic of the power-law correlations in the critical phase. A quantum phase transition is found at the largest value of the critical transverse frequency: here the critical intermediate phase shrinks to zero. Moreover, within the ordered phase, we predict a crossover from classical to quantum behavior, signifying the emergence of an additional characteristic scale for clock order. We discuss experimental realizations with trapped ions and polarized dipolar gases, and propose that within accessible technology, such experiments can provide a direct probe of the rich phase diagram of the quantum clock model, not easily observable in condensed matter analogues. Therefore, this works highlights the potential for ionic and dipolar systems to serve as simulators for complex models in statistical mechanics and condensed matter physics.
241 - L. Mogg , S. Zhang , G.-P. Hao 2019
Defect-free monolayers of graphene and hexagonal boron nitride were previously shown to be surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the two-dimensional crystals. Here we show that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions. In the experiments, we used suspended monolayers that had few if any atomic-scale defects, as shown by gas permeation tests, and placed them to separate reservoirs filled with hydrochloric acid solutions. Protons accounted for all the electrical current and chloride ions were blocked. This result corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals. Besides importance for theoretical developments, our results are also of interest for research on various separation technologies based on two-dimensional materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا